## ТЯЖЕЛЫЕ МЕТАЛЛЫ В ПОЧВАХ НАДЫМ-ПУР-ТАЗОВСКОГО РЕГИОНА <sup>9</sup>

С. Ю. Кукушкин, М. Г. Опекунова, А. Ю. Опекунов, И.Ю. Арестова

Санкт-Петербургский государственный университет, Санкт-Петербург

На территории Ямало-Ненецкого автономного округа (ЯНАО) открыто 236 месторождений углеводородного сырья, 77 из которых в настоящее время находятся в промышленной разработке. При этом, основная добыча углеводородного сырья осуществляется в Надым-Пур-Тазовском регионе. Для наиболее адекватной оценки уровня загрязнения почвенного покрова необходимо уделять пристальное внимание процессам естественной геохимической дифференциации содержания микроэлементов в почвах.

Цель работы — определение естественных средних содержаний тяжелых металлов (ТМ) в почвах тундр и лесотундр Надым-Пур-Тазовского региона. В период с 1993 по 2017 годы проведены комплексные геоэкологические исследования на территории 30 нефтегазоконденсатных месторождений (НГКМ) (рис. 1). Опробование происходило на участках сходных по физико-географическим условиям с отбором проб почв из двух генетических горизонтов: поверхностного аккумулятивного (О, ТО) и иллювиального (ВF, ВНF, G). В полученных образцах было определено валовое содержание ТМ (Сu, Zn, Ni, Co, Fe, Mn, Cr, Pb, Hg, Sr, Sc, Cd, Ba) методом масс-спектрометрии с индуктивно-связанной плазмой (ICP-MS) с полным кислотным разложением проб. Исследованные участки НГКМ равномерно распределены по территории Надым-Пур-Тазовского региона, а загрязнение почв в результате добычи углеводородного сырья носит локальный характер [1].

Проведённые исследования позволяют сделать вывод, что почвы Надым-Пур-Тазовского региона характеризуются содержанием ТМ в 3-9 раз ниже кларковых значений и значительным разбросом величин (табл. 1).

Почвенный покров исследованной территории отличается сложным мозаичным, комплексным строением и многообразием типов почв. Контрастность геохимических условий обуславливает значительную естественную вариабельность содержания ТМ в горизонтальной и вертикальной структурах почвенного покрова.

\_

<sup>9</sup> Работа выполнена при поддержке гранта РГО-РФФИ № 17-05-41070



Рис. 1 – Схема района исследований

Таблица 1 Содержание тяжелых металлов в генетических горизонтах почв исслелованной территории (мг/кг)

| исследованной территории (мі/кі)                   |     |      |      |      |      |      |      |      |      |       |       |      |
|----------------------------------------------------|-----|------|------|------|------|------|------|------|------|-------|-------|------|
|                                                    | Ba  | Mn   | Zn   | Cu   | Ni   | Co   | Pb   | Cd   | Cr   | Hg    | Fe    | V    |
| аккумулятивные горизонты (O, TO), n=425            |     |      |      |      |      |      |      |      |      |       |       |      |
| средн                                              | 194 | 376  | 32   | 9    | 13   | 6    | 10   | 0,33 | 18   | 0,096 | 12008 | 22   |
| мин                                                | 46  | 34   | 16   | 5    | 6    | 2    | 5    | 0,17 | 5    | 0,032 | 4310  | 5    |
| макс                                               | 486 | 1300 | 53   | 24   | 36   | 16   | 15   | 0,62 | 47   | 0,180 | 21790 | 68   |
| коэф. вариа-<br>ции (%)                            | 62  | 103  | 34   | 50   | 70   | 84   | 34   | 40   | 63   | 53    | 48    | 78   |
| иллювиальные горизонты (BF, BHF, G), n=353         |     |      |      |      |      |      |      |      |      |       |       |      |
| средн                                              | 409 | 336  | 29   | 9    | 14   | 9    | 10   | 0,10 | 43   | 0,030 | 21010 | 57   |
| мин                                                | 120 | 36   | 3    | 2    | 3    | 1    | 3    | 0,05 | 10   | 0,009 | 1980  | 10   |
| макс                                               | 575 | 785  | 50   | 23   | 28   | 18   | 14   | 0,14 | 72   | 0,139 | 30110 | 91   |
| коэф. вариации (%)                                 | 34  | 63   | 49   | 58   | 53   | 65   | 34   | 29   | 46   | 112   | 35    | 46   |
| Почвы За-<br>падной Си-<br>бири [2]                | н/д | 1060 | 85,5 | 33,8 | 25,9 | 15,6 | 16,4 | н/д  | 59,5 | н/д   | н/д   | 74,4 |
| Кларк лито-<br>сферы по<br>Виногра-<br>дову (1962) | 650 | 1000 | 85   | 47   | 58   | 18   | 16   | 0,13 | 83   | 0,08  | 1,7   | 90   |

Почвообразующие породы района исследований по гранулометрическому составу варьируют от глин и суглинков аллювиально-морского и

озерно-аллювиального происхождения до аллювиальных разнозернистых песков.

Содержание микроэлементов в почвах определяется генезисом подстилающих четвертичных пород. Проведенные исследования показали, что относительно низкое содержание микроэлементов в озерно-аллювиальных и аллювиальных отложениях сочетается с высокой концентрацией сидерофильных (V, Cr, Co, Ni) и халькофильных (Zn, Cu, Pb) элементов в аллювиально-морских отложениях третьей и четвертой морских террас. Повышенные концентрации большинства ТМ характерны для почв северной части Надым-Пур-Тазовского региона (Тазовский полуостров), сформировавшихся на глинистых и суглинистых аллювиально-морских отложениях.

Контрастность окислительно-восстановительных условий — характерная особенность тундровой зоны. Кислая восстановительная обстановка, переходящая в нижних горизонтах почв в глеевую, типична для заболоченных участков подчиненных фаций; для автоморфных в верхних горизонтах почв, обедненных гумусом и илистой фракцией — окислительная среда [3]. В этих условиях определено увеличение концентрации микроэлементов в глеевых и иллювиальных горизонтах почв.

На исследованной территории можно выделить закономерности изменения и аккумуляции ТМ при переходе от полигональных к южным тундрам и лесотундрам [4]. Содержание Ва, Zn, Cu, Fe, Ni и Со снижается в органогенных горизонтах почв от полигональных к плоско- и крупнобугристым торфяникам. Концентрация Pb, Cd в торфе остается практически постоянной. Отмечается увеличение содержания Cr и V в плоскобугристых торфяниках.

Проведенные исследования показали, что химический состав торфяников мало зависит от почвообразующих пород, в отличие от минеральных почв (светлоземов, подбуров, глееземов и др.).

При переходе от торфяно-болотных к подзолистым почвам наблюдаются различия в микроэлементном составе. В органогенных горизонтах (О) подзолистых почв определена более активная аккумуляцией Ва и Рь по сравнению с торфяно-болотными почвами, обусловленная способностью Рь аккумулироваться в самой верхней части почвенного профиля: в подстилках, грубогумусовых и гумусовых горизонтах [5]. На территории Надым-Пур-Тазовского региона Ва интенсивно поглощается кустарничками и кустарниками, что определяет повышенное его содержание в органогенных горизонтах подзолистых почв [6].

Подзолы иллювиально-железистые исследованной территории характеризуются пониженным содержанием большинства ТМ, что обуслов-

лено их низкими концентрациями в почвообразующих озерно-аллювиальных отложениях. При сравнении тяжелых и легких по механическому составу почв было определено статистически достоверное увеличение в органогенных горизонтах тяжелых почв содержания Mn, Ni, Co, Cd, Cr, Fe и Sc.

Проведенный анализ полученных спектров металлов в почвах позволяет сделать вывод, что в ряду изученных элементов для Cd характерна наиболее тесная связь с органическим веществом. Независимо от гранулометрического состава почв отмечено накопление Cd в торфяниках и аккумулятивных горизонтах светлоземов, глееземов, подбуров и др. почв. Такая закономерность типична и для Zn, но в меньшей степени.

По отношению к почвообразующим породам в почвах (за исключением торфяников) отмечено накопление Pb. Сидерофильные металлы (V, Sc, Mn, Fe, Co, Ni) в сравнении с почвообразующими породами аккумулируются в обоих генетических горизонтах почв (О и В), сформировавшихся на тяжелых по механическому составу почвообразующих породах. При этом Cr, Ba, Sr накапливаются только в иллювиальном горизонте. Наиболее равномерным распределением по почвенному профилю характеризуется Cu.

Проведенный факторный анализ методом главных компонент подтвердил основную роль в формировании микроэлементного состава почв Надым-Пур-Тазовского региона породного фактора, влияния гранулометрического состава почвообразующих пород и процесса торфонакопления.

Таким образом, проведенные исследования позволяют сделать вывод, что почвы Надым-Пур-Тазовского региона характеризуются низким содержанием ТМ. Химический состав почвенного покрова значительно варьирует в зависимости от структуры микро- и мезокомплексов, формирующих тундровые и лесотундровые ландшафты. Основными факторами, определяющими различия в содержании микроэлементов, можно считать гранулометрический состав почв, обусловленный типом подстилающих горных пород и исходный химический состав четвертичных отложений.

В аккумулятивных и иллювиальных горизонтах почв, сформировавшихся на тяжелых породах, отмечаются максимальные концентрации большинства ТМ. В горизонтах почв на легких по механическому составу субстратах содержание их снижается в 1,5–1,8 раза.

В условиях многолетнемерзлых пород специфика почвенной физико-химической миграции приводит к накоплению литофильных и сидерофильных металлов в минеральных горизонтах почв глинистого и тяжелосуглинистого состава с высокой контрастностью (отношение максимальной и минимальной концентраций в горизонтах почв), достигающей 8,1.

Для халькофильных элементов, напротив, в верхних почвенных горизонтах отмечается аккумуляция, что обусловлено их высокой подвижностью. Контрастность содержания при этом заметно ниже и не превышает 2,1. В максимальной степени выражена аккумуляция в органогенных горизонтах у Cd и Hg с контрастностью 7,2 и 5,5 соответственно.

Минимальные значения большинства микроэлементов установлены в торфяниках, где концентрация в 2-8 раз ниже их содержания в глинистых и суглинистых иллювиальных горизонтах. Исключение можно считать Hg и Cd, уровень которых в торфяниках в 3-4 раза выше, чем в иллювиальных горизонтах.

## Библиографические ссылки

- 1. Опекунов А. Ю., Опекунова М. Г., Кукушкин С. Ю., Ганул А. Г. Оценка экологического состояния природной среды районов добычи нефти и газа в Ямало-Ненецком автономном округе // Вестник Санкт-Петербургского университета, Сер. 7: Геология, география, 2012. № 4. С. 87–101.
- 2. Ильин В.Б. Тяжелые металлы в почвах Западной Сибири // Почвоведение. 1987. №11. С. 87–94.
- 3. Васильевская В.Д., Иванов В.В. Почвы севера Западной Сибири. Москва: МГУ, 1986. 225 с.
- 4. Опекунова М.Г., Опекунов А.Ю., Кукушкин С.Ю., Арестова И.Ю. Оценка трансформации природной среды в районах разработки углеводородного сырья на севере Западной Сибири // Сибирский экологический журнал, № 1, 2018, с. 122–138. DOI: 10.15372/SEJ20180111.
- 5. Глазовская М. А. Критерии классификации почв по опасности загрязнения свинцом // Почвоведение, № 4, 1994. С. 110–120.
- 6. Опекунова М.Г. Диагностика техногенной трансформации ландшафтов на основе биоиндикации: дисс. док. геогр. наук: 25.00.23. СПб, 2013. 402 с.

## ГИС-ПРОЕКТ АГРОГЕОХИМИЧЕСКОЙ КАРТЫ В КОМПЛЕКТЕ КАРТОГРАФИЧЕСКОГО БЛОКА ПРИ МНОГОЦЕЛЕВОМ ГЕОХИМИЧЕСКОМ КАРТИРОВАНИИ ТЕРРИТОРИИ

М.П. Оношко  $^{1}$ , Л.И. Смыкович  $^{2}$ , А.С. Глаз  $^{3}$ , М.А. Подружая  $^{1}$ 

<sup>1</sup>Институт геологии НПЦ по геологии, Минск <sup>2</sup>Белорусский государственный университет, Минск <sup>3</sup>Институт природопользования НАН Беларуси, Минск

Многоцелевое геохимическое картирование является одним из видов региональных работ, который позволяет в едином технологическом процессе путем системного изучения сопряженных компонентов природногеологической среды решить комплекс геологосъемочных, прогнозно-поисковых, эколого-геохимических, агрогеохимических и других задач [1,