6. Klene A.E., Nelson F.E., Shiklomanov N.I. The N-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk river basin, Alaska, U.S.A. // Arctic, Antarctic, and Alpin Research, 2001. V. 33. № 2. P. 140–148.

ИЗУЧЕНИЕ СТРУКТУРЫ ПОЧВЕННОГО ПОКРОВА МИНСКОЙ ОБЛАСТИ С ПРИМЕНЕНИЕМ ГИС-АНАЛИЗА

А.А. Сазонов

Белорусский государственный университет, Минск

Цифровое картографирование почв (ЦКП) — молодая научная дисциплина, оформившаяся в 2005 г. после создания рабочей группы по цифровой почвенной картографии в рамках международного общества почвоведов. Первые шаги в этом направлении относятся к 80-м годам прошлого века, когда цифровые методы ландшафтного анализа начали широко применяться в почвенном картографировании и в способах отображения на картах структуры почвенного покрова. В 90-х годах в почвоведении выделилось направление «педометрика», занимающееся применением математических и статистических методов для изучения распределения и генезиса почв.

Толчком к развитию ЦКП послужило развитие геоинформатики и широкое внедрение геоинформационных систем, а также данных дистанционного зондирования. С приходом геоинформационных технологий в цифровую картографию стал возможным переход от хранения и использования оцифрованных почвенных карт к их непосредственному производству с использованием цифровых технологий.

Исследование структуры почвенного покрова (СПП) является одним из основных направлений в современной географии почв. Почвенный покров (ПП) любой территории имеет сложное строение, что определяется не только рельефом, почвообразующими породами и степенью увлажнения, но и характером взаимосвязи отдельных почв, их пространственным расположением, степенью различия.

В качестве элементарной исходной единицы почвенного покров применяется понятие «элементарный почвенный ареал» (ЭПА) – это «контур, состоящий из почвы, относящейся к какой-либо одной классификационной единице наиболее низкого ранга, занимающего пространство со всех сторон ограниченный другими ЭПА».

ЭПА разнообразны по размерам и формам. Некоторые граничащие ЭПА могут быть тесно взаимосвязаны, другие слабо взаимосвязаны, у

третьих связь может не прослеживаться вовсе. Такое разнообразие создает различные почвенные комбинации, которыми и представлен почвенный покров любой территории.

Чередование в определенном порядке отдельных ЭПА, генетически связанных и обусловленных между собой, образуют почвенные комбинации. В свою очередь эти комбинации, мозаично или симметрично повторяясь, и образуют структуру почвенного покрова.

Как объект исследований, почвенный покров возможно формализировать только в виде и посредством почвенной карты. Для пространственного, картометрического, морфометрического, генетико-динамического и др. видов анализа использование бумажных карт трудоемко, а в ряде случаев невозможно. Этими факторами обусловлен выбор объектов и территории исследования, представленный цифровыми картами ПП на основе слоя «Почвы» ЗИС РБ.

При анализе почвенных карт использованы возможности ГИС ArcGIS, в ее составе разработана комплексная информационная система анализа почвенных карт. Разработанные модели геообработки позволяют упростить и ускорить процесс морфометрического анализа почвенных контуров в любом масштабе. Также упрощается оценка сложности, контрастности и неоднородности почвенного покрова.

Большая часть территории Минской области принадлежит Центральной агропочвенной провинции, где выделяются Ошмянско-Минский, Узденско-Осиповичско-Червеньский, Новогрудско-Несвижско-Слуцкий, Мостовский агропочвенные районы.

Неоднородность почвенного покрова административных районов (табл. 1) оценивалась по данным слоя «Почвы» ЗИС, которые покрывают только территорию сельскохозяйственных земель. В целом, почвенные карты административных районов Минской области покрывают от 30 % до 75 % территории районов.

Почвенный покров исследуемой территории характеризуется крайне высокой контрастностью (коэффициенты контрастности более 9,0) и оптимальной сложностью (значения коэффициента сложности менее 1,0). В центральной части Минской области значения коэффициента неоднородности позволяют говорить о слабо неоднородном почвенном покрове, наибольшего значения (24,97) неоднородность достигает в Солигорском районе, в связи с высокими значениями коэффициента контрастности, который обусловлен разнообразием природных условий в пределах района, его пограничного положения (рис. 1).

В почвенном покрове агроландшафтов области преобладают дерновоподзолистые супесчаные почвы (26 %), дерново-подзолистые слабоглееватые (21 %), дерново-подзолистые глееватые (13 %).

Таблица 1 Коэффициенты сложности, контрастности, неоднородности

коэффициенты сложности, контрастности, неоднородности									
Район	Коэффициент	Коэффициент	Коэффициент не-						
Гаион	контрастности	сложности	однородности						
Березинский район	14,67	0,47	6,86						
Борисовский район	12,66	0,47	5,92						
Вилейский район	14,14	0,61	8,58						
Воложинский район	10,23	0,64	6,58						
Червенский район	13,09	0,42	5,56						
Дзержинский район	9,09	0,67	6,09						
Клецкий район	12,73	0,56	7,09						
Копыльский район	12,62	0,97	12,18						
Крупский район	11,59	0,48	5,55						
Любанский район	28,11	0,53	14,78						
Минский район	8,21	1,10	9,03						
Молодечненский район	11,85	0,66	7,80						
Мядельский район	15,15	0,78	11,75						
Несвижский район	9,81	0,61	5,96						
Пуховичский район	16,49	0,54	8,83						
Слуцкий район	14,74	0,96	14,17						
Солигорский район	28,88	0,86	24,97						
Стародорожский район	12,64	0,66	8,29						
Столбцовский район	9,56	0,58	5,53						
Узденский район	16,10	0,53	8,57						
Логойский район	12,31	0,59	7,21						
Смолевичский район	10,36	0,54	5,62						

Наибольший средний размер контура — также у дерново-подзолистых супесчаных почв, в среднем 4,42 га. Наименьший средний размер контура — у дерново-подзолистых глеевых почв — 1,51 га. Средний размер контура на исследуемой территории — 2,80, что характеризует пестроту почвенного покрова как пеструю (средние значения площади 2-5 га) (табл. 2). Наибольший коэффициент дифференциации почвенных контуров (ДПК) характерен дерново-подзолистым суглинистым почвам (1,13). Данный показатель характеризует степень изменчивости величины ЭПА — чем он больше, тем более различны площади отдельных ЭПА. Наименьший коэффициент ДПК — у дерново-карбонатных почв (0,83).

Дерново-подзолистые глеевые почвы характеризуются наибольшим индексом дробности (ИД) -0.66. Наиболее низкий индекс дробности у дерново-подзолистых супесчаных и дерново-подзолистых слабоглееватых (временно избыточно-увлажненных) почв -0.23.

Почвообразующие породы в основном водноледниковые (53 %), на лессовые и лессовидные приходится 24 %, еще 17 % – на органогенные.

Доля аллювиальных почв составляет 5 %. На моренных отложениях развиваются 1 % почв области.

Почвам области характерно двухчленное строение (75 %), у 18 % строение трехчленное, и лишь 6 % почв имеют однородное строение.

По гранулометрическому составу половина почв области (51 %) супесчаные, органогенные и суглинистые – по 17 %, доля песчаных почв – 15 %.

Таблица 2 Морфометрические характеристики почв Минской области

тторфомстрические характеристики почь тинской области										
Почва	S, га	ДПК	Индекс дробности	Scp,	Ккр	Кизр	КР'ср	КРср		
ДБ1	11825,5	1,11	0,43	2,31	0,44	4,76	1,30	1,86		
ДБ2	67153,6	1,08	0,35	2,89	0,38	6,48	2,67	2,01		
ДБ3	109978,6	1,09	0,39	2,55	0,37	5,38	2,09	2,05		
ДБ4	597,5	0,96	0,45	2,24	0,41	3,59	0,97	1,79		
ДК	45,8	0,83	0,57	1,76	0,67	1,73	0,51	1,29		
ДП на песках	119047,3	1,06	0,36	2,81	0,56	2,45	0,88	1,48		
ДП на суглинках	128161,3	1,13	0,25	4,01	0,50	2,90	0,87	1,60		
ДП на супесях	535660,2	1,11	0,23	4,42	0,50	2,91	0,85	1,59		
ДПБо	98773,5	1,06	0,34	2,95	0,39	4,43	1,40	1,92		
ДПБ1	439055,9	1,09	0,23	4,35	0,38	4,70	1,06	1,96		
ДПБ2	278435,3	1,12	0,28	3,56	0,40	4,59	1,55	1,95		
ДПБ3	13593,2	1,08	0,66	1,51	0,54	3,00	0,98	1,59		
ДПБ4	8485,09	1,02	0,34	2,94	0,43	3,74	0,95	1,79		
ТБн	247924,6	1,06	0,30	3,35	0,41	4,20	1,15	1,84		
ТБв	6266,7	1,10	0,33	3,05	0,49	3,59	1,01	1,68		
ТДБН	13284,1	1,02	0,56	1,78	0,42	4,00	1,11	1,82		
ТДБВ	735,4	0,98	0,64	1,57	0,52	2,98	0,86	1,61		
ТПБ	368,0	0,93	0,43	2,34	0,53	2,40	0,64	1,50		

Примечание: ДК – дерново-карбонатные, ДП – дерново-подзолистые, ДПБ1 – дерново-подзолистые слабоглееватые (временно избыточно увлажненные), ДПБ2 – дерново-подзолистые глееватые, ДПБ3 – дерново-подзолистые глеевые, ДПБ4 – дерново-подзолистые глееватые и глеевые с иллювиально-гумусовым или ортштейновым горизонтом, ТДБ – дерново-подзолисто-торфянисто-глеевые, ТДБ – дерново-подзолисто-торфянисто-глеевые, ДБ1 – дерновые заболоченные слабоглееватые (временно избыточно увлажняемые), ДБ2 – дерновые заболоченные глееватые, ДБ3 – дерновые заболоченные глеевые, ДБ4 – дерново-перегнойно-глеевые, ТДБв – торфянисто-глеевые верховые, ТДБн – торфянисто-глеевые низинные и аллювиальные, ТБв – торфяные и торфяно-глеевые верховые, ТБн – торфяные и торфяно-глеевые низинные и аллювиальные, АП – антропогенно-преобразованные.

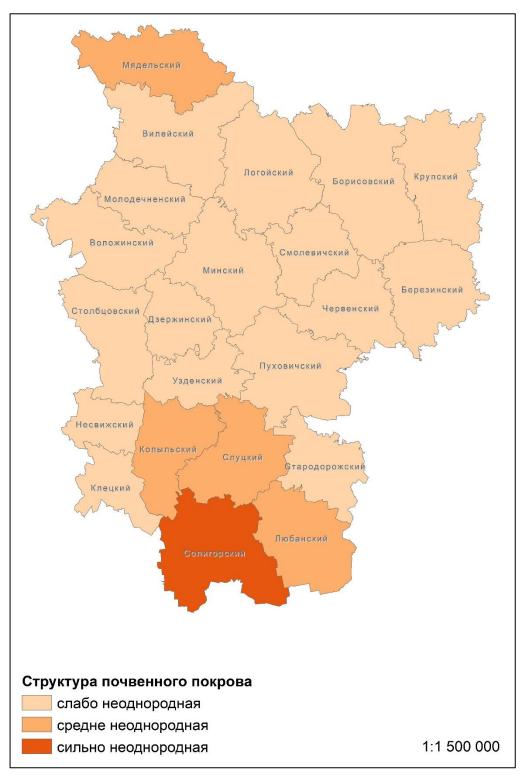


Рис. 1 – Неоднородность почвенного покрова административных районов Минской области

Библиографические ссылки

- 1. McBratney, A.B., Mendoça Santos, M.L., Minasny, B. On digital soil mapping // Geoderma. 2003. №117 (1-2). P. 3-52.
- 2. Годельман Я. М. Неоднородность почвенного покрова и использования земель. М.: Наука, 1981.
- 3. Земельно-информационная система Республики Беларусь. Правила графического отображения. = Зямельна-інфармацыйная сістэма Рэспублікі Беларусь. Правілы графічнага адлюстравання: ТКП ОР (03150). Минск, Госкомимущество, 2007.
- 4. Клебанович Н.В., Прокопович С.Н., Чаюк А.И., Сазонов А.А. Интерактивная генерализация в среде ArcGIS как основной способ создания цифровых разномасштабных почвенных карт // Земля Беларуси. 2015. № 2. С. 42-47.
- 5. Клебанович Н.В., Прокопович С.Н., Сазонов А.А. Опыт создания цифровых почвенных карт административных районов на основе автоматизации процессов картографической генерализации почвенных карт хозяйств // Воспроизводство плодородия почв и охрана в условиях современного земледелия: материалы V съезда Белорусского общества почвоведов и агрохимиков, Минск, июнь 2016 г.: тез. докл. / Институт почвоведения и агрохимии НАН Респ. Беларусь; редкол.: В. В. Лапа [и др.]. Минск, 2015. С. 101–104.
 - 6. Фридланд В.М. Структура почвенного покрова. М.: Мысль, 1972.