УДК 519.2

О ВЫЧИСЛЕНИИ ВЕРОЯТНОСТЕЙ ОШИБОК УСЕЧЕННОГО ПОСЛЕДОВАТЕЛЬНОГО КРИТЕРИЯ ОТНОШЕНИЯ ВЕРОЯТНОСТЕЙ

А. Ю. ХАРИН¹⁾, **Т. Т. ТУ**¹⁾

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Для модели независимых разнораспределенных наблюдений рассмотрен усеченный последовательный критерий (тест) отношения вероятностей для проверки двух простых гипотез. Установлены нижняя и верхняя границы вероятности того, что необходимое для завершения критерия количество наблюдений не превышает предварительно заданное число. Получены неравенства для вероятностей ошибок первого и второго рода, обобщающие известные неравенства. Построены новые приближенные выражения для вероятностей ошибок первого и второго рода. Результаты применены к модели временного ряда с трендом. Кроме того, для модели временного ряда с трендом исследованы свойства последовательного теста, в момент усечения принимающего решение на основе оценки параметра методом наименьших квадратов. Приводятся результаты вычислительных экспериментов.

Ключевые слова: последовательный критерий отношения вероятностей; усеченный тест; вероятности ошибок; временной ряд с трендом.

ON ERROR PROBABILITIES CALCULATION FOR THE TRUNCATED SEQUENTIAL PROBABILITY RATIO TEST

A. Y. KHARIN¹⁾, T. T. TU¹⁾

^aBelarusian State University, 4 Niezaliežnasci Avenue, Minsk 220030, Belarus Corresponding author: A. Y. Kharin (kharinay@bsu.by)

The truncated sequential probability ratio test of two simple hypotheses is considered for the model of independent non-identically distributed observations. The lower and upper bounds are given for the probability that the necessary number of observations to stop the test does not exceed a preassigned number. New inequalities for the error probabilities of type I and II are obtained to generalize the classic results. New approximations for the error probabilities of type I and II are constructed. The results are applied for the model of time series with trend. In addition, properties of a sequential test based on the least squares method parameter estimate at the moment of truncation are analyzed for the model of time series with trend. Computer experiment results are given.

Key words: sequential probability ratio test; truncated test; error probabilities; time series with trend.

Образец цитирования:

Харин А. Ю., Ту Т. Т. О вычислении вероятностей ошибок усеченного последовательного критерия отношения вероятностей // Журн. Белорус. гос. ун-та. Математика. Информатика. 2018. № 1. С. 68–76.

For citation:

Kharin A. Y., Tu T. T. On error probabilities calculation for the truncated sequential probability ratio test. *J. Belarus. State Univ. Math. Inform.* 2018. No. 1. P. 68–76 (in Russ.).

Авторы:

Алексей Юрьевич Харин — кандидат физико-математических наук, доцент; доцент кафедры теории вероятностей и математической статистики факультета прикладной математики и информатики.

Тон Тхат Ту – аспирант кафедры теории вероятностей и математической статистики факультета прикладной математики и информатики. Научный руководитель – А. Ю. Харин.

Authors:

Alexey Y. Kharin, PhD (physics and mathematics), docent; associate professor at the department of probability theory and mathematical statistics, faculty of applied mathematics and informatics.

kharinay@bsu.by

Ton That Tu, postgraduate student at the department of probability theory and mathematical statistics, faculty of applied mathematics and informatics.

tthattu@gmail.com

Последовательный критерий отношения вероятностей (ПКОВ), предложенный А. Вальдом в 1947 г. [1], успешно применяется во многих задачах прикладной статистики благодаря его оптимальным свойствам [2]. Ключевая особенность подхода состоит в том, что количество наблюдений N заранее не фиксируется и является случайной величиной. Основные характеристики теста (вероятности ошибок первого и второго рода и среднее число наблюдений) хорошо исследованы при условии одинаковых распределений наблюдений [1; 3–5]. На практике по разным причинам, связанным со временем, финансами или условиями эксперимента, количество наблюдений может быть ограничено заранее заданным значением M. Для такой ситуации в [1] предложен усеченный на M-м наблюдении ПКОВ. При больших значениях M А. Вальд использовал нормальную аппроксимацию для оценивания вероятностей ошибок первого и второго рода [1]. Обобщение этих оценок получено в [3]. Однако на практике исследуемые данные часто описываются более сложными моделями, например моделью временного ряда с трендом [6; 7] или более общими. Последовательный тест для проверки гипотез о параметрах временных рядов с трендом и его характеристики исследованы в [8; 9]. В настоящей статье приводятся новые неравенства для вероятностей ошибок в более общем случае независимых разнораспределенных наблюдений. В качестве применения этих общих результатов рассмотрена модель временных рядов с трендом.

Математическая модель

Пусть x_1, x_2, \ldots – последовательные наблюдения независимых случайных величин $\{X_t, t \ge 1\}$, $p_t(x_t, \theta)$ – плотности распределения вероятностей, θ – неизвестное истинное значение параметра.

Рассматриваются две простые гипотезы:

$$H_0: \theta = \theta^0, H_1: \theta = \theta^1, \tag{1}$$

где θ^0 , θ^1 – известные значения. Обозначим статистику накопленного по n наблюдениям логарифмического отношения правдоподобия для гипотез (1):

$$\Lambda_n = \Lambda_n(x_1, x_2, ..., x_n) = \sum_{t=1}^n \lambda_t,$$
 (2)

где $\lambda_t = \ln\left(\frac{p_t\left(x_t, \theta^1\right)}{p_t\left(x_t, \theta^0\right)}\right)$ – логарифмическое отношение правдоподобия, вычисленное по наблюдению x_t .

В последовательном тесте Вальда [1] при проверке гипотез (1) после n наблюдений принимается решение

$$d = \mathbf{1}_{[C_n, +\infty)} (\Lambda_n) + 2 \cdot \mathbf{1}_{(C_n, C_n)} (\Lambda_n), \tag{3}$$

где $\mathbf{1}_D(\cdot)$ означает индикаторную функцию множества D. Решение d=2 соответствует продолжению процесса наблюдения, поскольку заданная точность не может быть обеспечена. Решение d=0 (d=1) означает остановку процесса наблюдения и принятие гипотезы $H_0(H_1)$ соответственно. В (3) C_- , $C_+ \in \mathbb{R}$, $C_- < C_+$ — параметры теста, называемые порогами. В соответствии с [1] будем использовать следующие значения:

$$C_{-} = \ln\left(\frac{\beta_0}{1 - \alpha_0}\right), C_{+} = \ln\left(\frac{1 - \beta_0}{\alpha_0}\right),$$

где α_0 , β_0 — заданные предельно допустимые значения вероятностей ошибок первого (принять гипотезу H_1 при справедливой H_0) и второго (принять гипотезу H_0 при справедливой H_1) рода соответственно. В силу ограничения на максимально возможное количество наблюдений используется усеченный ПКОВ (УПКОВ): если процедура (2), (3) не приводит к терминальному решению в пользу одной из гипотез (1) при $n \le M-1$, решение на основании M-го наблюдения принимается следующим образом:

$$d = \mathbf{1}_{(0, +\infty)} (\Lambda_M). \tag{4}$$

Результаты для общего случая

Примем обозначения: $P = \begin{pmatrix} p_1, p_2, ..., p_n \end{pmatrix}^T$, $p_i = P(A_i)$, $Q = \left\{q_{ij}\right\}_{n \times n}$, $q_{ij} = P(A_iA_j)$, $i, j = \overline{1, n}$, и \overline{Q} – обобщенная обратная матрица [10] для Q.

Для произвольных событий A_i , i = 1, n, имеет место неравенство [11]:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) \ge P^{T} \bar{Q} P. \tag{5}$$

Будем использовать также следующее свойство нормального распределения вероятностей [12]. Если X, Y – независимые случайные величины, $X \sim N(\mu_x, \sigma_x^2), Y \sim N(\mu_y, \sigma_y^2)$, то

$$f_{X+Y|Y}(x|y) = \frac{f_{X+Y,Y}(x,y)}{f_Y(y)} = n_1(x;y + \mu_x,\sigma_x^2),$$
 (6)

где $n_1(x; \mu, \sigma^2)$ – плотность распределения вероятностей, соответствующая нормальному распределению $N(\mu, \sigma^2)$ с параметрами μ, σ^2 .

Для произвольных случайных событий A_i , $i = \overline{1, n}$, имеет место следующее неравенство [13]:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P(A_{i}) - \sum_{i=1}^{n-1} P(A_{i} A_{i+1}).$$
(7)

Пусть N – необходимое число наблюдений до остановки теста (2), (3) без ограничения количества наблюдений; α и β – вероятности ошибок первого и второго рода соответственно для такого теста.

Обозначим: $P_k(\cdot)$ – вероятностная мера при справедливой гипотезе H_k для $k \in \{0, 1\}$;

$$\begin{split} P_k &= \left(p_1^{(k)}, \ p_2^{(k)}, \ \ldots, \ p_M^{(k)}\right)^T, \ Q_k = \left\{q_{ij}^{(k)}\right\}_{M \times M}, \ p_i^{(k)} = 1 - a_i^{(k)}, \\ a_i^{(k)} &= P_k \left(\Lambda_i \in \left(C_-, \ C_+\right)\right), \ q_{ij}^{(k)} = \begin{cases} 1 - a_i^{(k)} - a_j^{(k)} + a_{ij}^{(k)}, \ i \neq j, \\ 1 - a_i^{(k)}, \ i = j, \end{cases} \\ a_{ij}^{(k)} &= P_k \left(\Lambda_i, \ \Lambda_j \in \left(C_-, \ C_+\right)\right), \ b_i^{(k)} = P_k \left(\Lambda_j, \ \Lambda_{i+1}, \ \Lambda_M \in \left(C_-, \ C_+\right)\right), \end{split}$$

где \bar{Q}_k — обобщенная обратная матрица для Q_k . **Теорема 1.** В рамках рассмотренной модели наблюдений для ПКОВ (2), (3) имеют место следующие неравенства:

$$P_{k}^{T} \overline{Q}_{k} P_{k} \leq P_{k} (N \leq M) \leq M - 2 - (M - 3) q_{MM}^{(k)} + \sum_{i=2}^{M-2} (q_{iM}^{(k)} - q_{ii}^{(k)} - b_{i}^{(k)}) - b_{1}^{(k)}, \ k \in \{0, 1\}.$$
 (8)

Доказательство. Пусть $A_i = \left\{ \omega : \Lambda_i \not\in \left(C_-, \, C_+\right) \right\}, \ i = \overline{1, \, M}.$ Тогда

$$P_k(N \le M) = P_k\left(\bigcup_{i=1}^M A_i\right) = P_k(A_M) + P_k\left(\bigcup_{i=1}^{M-1} (A_i \overline{A}_M)\right).$$

Используя (7), получаем

$$\begin{split} P_k\big(N \leq M\big) \leq P_k\big(A_M\big) + \sum_{i=1}^{M-1} P_k\Big(A_i \overline{A}_M\Big) - \sum_{i=1}^{M-2} P_k\Big(A_i A_{i+1} \overline{A}_M\Big) = \\ &= P_k\big(A_M\big) + \sum_{i=1}^{M-1} \Big[P_k\Big(A_i\Big) - P_k\Big(A_i A_M\Big)\Big] - \sum_{i=1}^{M-2} \Big[P_k\Big(A_i A_{i+1}\Big) - P_k\Big(A_i A_{i+1} A_M\Big)\Big] = \\ &= \sum_{i=1}^{M} P_k\Big(A_i\Big) - \sum_{i=1}^{M-1} P_k\Big(A_i A_M\Big) - \sum_{i=1}^{M-2} P_k\Big(A_i A_{i+1}\Big) + \sum_{i=1}^{M-2} P_k\Big(A_i A_{i+1} A_M\Big) = \\ &= \sum_{i=1}^{M} q_{ii}^{(k)} - \sum_{i=1}^{M-1} q_{iM}^{(k)} - \sum_{i=1}^{M-2} q_{ii+1}^{(k)} + \sum_{i=1}^{M-2} P_k\Big(A_i A_{i+1} A_M\Big), \end{split}$$

поскольку $P_k\left(A_iA_j\right) = 1 - P_k\left(\overline{A}_i\right) - P_k\left(\overline{A}_j\right) + P_k\left(\overline{A}_i\overline{A}_j\right), \ \forall i, j = \overline{1, M}, \ k \in \left\{0, 1\right\}.$ Отметим, что

$$\begin{split} &P_k\Big(A_iA_{i+1}A_M\Big) = 1 - P_k\Big(A_i\Big) - P_k\Big(A_{i+1}\Big) - P_k\Big(A_M\Big) + \\ &+ P_k\Big(A_iA_{i+1}\Big) + P_k\Big(A_iA_M\Big) + P_k\Big(A_{i+1}A_M\Big) - P_k\Big(\overline{A}_i\overline{A}_{i+1}\overline{A}_M\Big) = \\ &= 1 - q_{ii}^{(k)} - q_{i+1i+1}^{(k)} - q_{MM}^{(k)} + q_{ii+1}^{(k)} + q_{iM}^{(k)} + q_{i+1M}^{(k)} - b_i^{(k)}. \end{split}$$

Из этого следует, что

$$\begin{split} \sum_{i=1}^{M-2} P_k \Big(A_i A_{i+1} A_M \Big) &= M - 2 - \big(M - 2 \big) q_{MM}^{(k)} - \sum_{i=1}^{M-2} b_i^{(k)} + \sum_{i=1}^{M-2} q_{ii+1}^{(k)} - \\ &- 2 \sum_{i=1}^{M-1} q_{ii}^{(k)} + q_{11}^{(k)} + q_{M-1M-1}^{(k)} + 2 \sum_{i=1}^{M-1} q_{iM}^{(k)} - q_{1M}^{(k)} - q_{M-1M}^{(k)}. \end{split}$$

В результате получаем правую часть (8):

$$P_k(N \le M) \le M - 2 - (M - 3)q_{MM}^{(k)} - \sum_{i=2}^{M-2} q_{ii}^{(k)} + \sum_{i=2}^{M-2} q_{iM}^{(k)} - \sum_{i=1}^{M-2} b_i^{(k)}.$$

Левая часть (8) следует из (5). Теорема доказана.

Пусть N_M — необходимое число наблюдений для остановки усеченного теста с ограничением (4), α_M и β_M — вероятности ошибок первого и второго рода соответственно для такого теста. Обозначим $K_i^+ = P_i(N > M, \Lambda_M \in (0, C_+)), K_i^- = P_i(N > M, \Lambda_M \in (C_-, 0]).$

Теорема 2. Для рассмотренной модели наблюдений вероятности ошибок теста (2)-(4) удовлетворяют неравенствам:

$$\alpha_M \le e^{-C_+} (1 - \beta_M) + K_0^+ - e^{-C_+} K_1^+,$$
 (9)

$$\beta_M \le e^{C_-} (1 - \alpha_M) + K_1^- - e^{C_-} K_0^-. \tag{10}$$

Доказательство. Пусть B_n , $n=\overline{1,\,M}$, — подмножества n-мерного евклидова пространства, где $C_-<\Lambda_i< C_+$ для $i=1,\,2,\,\ldots,\,n-1$ и $\Lambda_n\geq C_+$; E_n , $n=\overline{1,\,M}$, — подмножества n-мерного евклидова пространства, где $C_-<\Lambda_i< C_+$ для $i=1,\,2,\,\ldots,\,n-1$ и $\Lambda_n\leq C_-$. Обозначим функции правдоподобия по наблюдениям $\left\{x_1,\,x_2,\,\ldots,\,x_n\right\}$ при гипотезе H_k , $k\in\{0,1\}$, через $p_{kn}\big(x_1,\,x_2,\,\ldots,\,x_n\big)$, т. е. $p_{kn}\big(x_1,\,x_2,\,\ldots,\,x_n\big)=p_1\big(x_1,\,\theta^k\big)$ х

$$\times p_2(x_2, \theta^k) \dots p_n(x_n, \theta^k)$$
. Тогда можно записать $\Lambda_n = \ln \left(\frac{p_{1n}(x_1, x_2, ..., x_n)}{p_{0n}(x_1, x_2, ..., x_n)} \right)$,

И

$$\alpha_{M} = P_{0}\left(\Lambda_{N_{M}} \geq C_{+}, N_{M} \leq M - 1\right) + P_{0}\left(\Lambda_{N_{M}} > 0, N_{M} = M\right) =$$

$$= \sum_{i=1}^{M-1} P_{0}\left(\Lambda_{i} \geq C_{+}, N_{M} = i\right) + P_{0}\left(\Lambda_{M} > 0, N > M - 1\right) = \sum_{i=1}^{M} P_{0}\left(B_{i}\right) + P_{0}\left(0 < \Lambda_{M} < C_{+}, N > M - 1\right) =$$

$$= \sum_{i=1}^{M} \int_{B_{i}} p_{0i}\left(x_{1}, x_{2}, ..., x_{i}\right) dx_{1} dx_{2} ... dx_{i} + K_{0}^{+} = \sum_{i=1}^{M} \int_{B_{i}} \left[p_{1i}\left(x_{1}, x_{2}, ..., x_{i}\right) \frac{p_{0i}\left(x_{1}, x_{2}, ..., x_{i}\right)}{p_{1i}\left(x_{1}, x_{2}, ..., x_{i}\right)}\right] dx_{1} dx_{2} ... dx_{i} + K_{0}^{+} =$$

$$= \sum_{i=1}^{M} \int_{B_{i}} p_{1i}\left(x_{1}, x_{2}, ..., x_{i}\right) e^{-\Lambda_{i}} dx_{1} dx_{2} ... dx_{i} + K_{0}^{+} \leq \sum_{i=1}^{M} e^{-C_{+}} P_{1}\left(B_{i}\right) + K_{0}^{+} = \sum_{i=1}^{M} e^{-C_{+}}\left(P_{1}\left(N = i\right) - P_{1}\left(E_{i}\right)\right) + K_{0}^{+} =$$

$$= e^{-C_{+}}\left(1 - \beta_{M}\right) + K_{0}^{+} + e^{-C_{+}}\left(P_{1}\left(N = M\right) - P_{1}\left(N_{M} = M\right) + P_{1}\left(\Lambda_{i} \in \left(C_{-}, C_{+}\right), i = \overline{1, M - 1}, \Lambda_{M} \in \left(C_{-}, 0\right]\right)\right) =$$

$$= e^{-C_{+}}\left(1 - \beta_{M}\right) + K_{0}^{+} - e^{-C_{+}}K_{1}^{+}.$$

что доказывает соотношение (9). Аналогично доказывается и неравенство (10). Теорема доказана.

Замечание 1. Когда $M = +\infty$, получаем $K_0^{\pm} = K_1^{\pm} = 0$ при условии, что тест заканчивается за конечное число наблюдений с вероятностью 1. В этом случае неравенства (9), (10) превращаются в известные неравенства Вальда для порогов ПКОВ [1]:

$$A \le \frac{1 - \beta_{\infty}}{\alpha}, \ B \ge \frac{\beta_{\infty}}{1 - \alpha},$$

где $A = e^{C_+}$ и $B = e^{C_-}$.

Замечание 2. Пусть $p_+ = K_0^+ - e^{-C_+} K_1^+$, $p_- = K_1^- - e^{C_-} K_0^-$. Если при оценивании пренебречь величинами выхода за границы интервала (C_-, C_+) в момент остановки теста, то неравенства (9), (10) превратятся в равенства:

$$\begin{cases} \alpha_M = e^{-C_+} (1 - \beta_M) + p_+, \\ \beta_M = e^{C_-} (1 - \alpha_M) + p_-. \end{cases}$$

Решая эту систему уравнений, получаем:

$$\alpha_{M} = \frac{p_{+} + e^{-C_{+}} - e^{C_{-} - C_{+}} - p_{-} e^{-C_{+}}}{1 - e^{C_{-} - C_{+}}}, \ \beta_{M} = \frac{p_{-} + e^{C_{-}} - e^{C_{-} - C_{+}} - p_{+} e^{C_{-}}}{1 - e^{C_{-} - C_{+}}}.$$
 (11)

Можно использовать формулы (11) для аппроксимации истинных значений α_M , β_M , однако имеется сложность аналитического вычисления значений K_i^{\pm} , i=0,1.

Проверка гипотез о параметрах временных рядов с трендом

Рассмотрим гипотетическую вероятностную модель временного ряда с трендом [14]:

$$x_t = \theta^T \psi(t) + \xi_t, \ t = 1, 2, ..., M,$$
 (12)

где $\psi(t) = (\psi_1(t), \psi_2(t), ..., \psi_m(t))^T$, $t \ge 1$, — базисные функции тренда; $\theta = (\theta_1, \theta_2, ..., \theta_m)^T \in \mathbb{R}^m$ — неизвестный вектор параметров; $\{\xi_t, t \ge 1\}$ — последовательность независимых одинаково распределенных гауссовских случайных величин; $\xi_t \sim N(0, \sigma^2)$. Рассмотрим задачу проверки гипотез (1). Для $t \ge 1$ получим

$$x_{t} \sim N\left(\theta^{T} \psi(t), \sigma^{2}\right), \quad p_{t}(x, \theta) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{1}{2\sigma^{2}} \left(x - \theta^{T} \psi(t)\right)^{2}\right\},$$

 $\lambda_t = \lambda_t(x_t) = -\frac{1}{2\sigma^2} \left\{ 2x_t \left(\theta^0 - \theta^1 \right)^T \psi(t) + \left(\theta^1 \right)^T \psi(t) \psi^T(t) \theta^1 - \left(\theta^0 \right)^T \psi(t) \psi^T(t) \theta^0 \right\}.$

Обозначим: $E^{(l)}(\cdot)$, $D^{(l)}(\cdot)$ – условное математическое ожидание и дисперсия при условии, что справедлива гипотеза H_l , $l \in \{0,1\}$; $H_n = \sum_{t=1}^n \psi(t) \psi^T(t)$.

Лемма 1 [8]. В условиях модели (12) для теста (2), (3) проверки гипотез (1) статистики λ_i , Λ_n имеют гауссовские распределения вероятностей, и справедливы соотношения:

$$E(\lambda_{t}) = -\frac{1}{2\sigma^{2}} \left\{ 2\left(\theta^{0} - \theta^{1}\right)^{T} \psi(t) \psi^{T}(t) \theta + \left(\theta^{1}\right)^{T} \psi(t) \psi^{T}(t) \theta^{1} - \left(\theta^{0}\right)^{T} \psi(t) \psi^{T}(t) \theta^{0} \right\},$$

$$E(\Lambda_{n}) = -\frac{1}{2\sigma^{2}} \left\{ 2\left(\theta^{0} - \theta^{1}\right)^{T} H_{n} \theta + \left(\theta^{1}\right)^{T} H_{n} \theta^{1} - \left(\theta^{0}\right)^{T} H_{n} \theta^{0} \right\},$$

$$D(\lambda_{t}) = \frac{\left(\theta^{0} - \theta^{1}\right)^{T} \psi(t) \psi^{T}(t) \left(\theta^{0} - \theta^{1}\right)}{\sigma^{2}}; D(\Lambda_{n}) = \frac{\left(\theta^{0} - \theta^{1}\right)^{T} H_{n} \left(\theta^{0} - \theta^{1}\right)}{\sigma^{2}}.$$

Примем обозначения:

$$\Gamma = (\theta^0 - \theta^1)(\theta^0 - \theta^1)^T; \ s_n^2 = \sum_{t=1}^n \sigma_t^2, \ m_n^{(l)} = \sum_{t=1}^n \mu_t^{(l)} = \frac{(-1)^{l+1} s_n^2}{2}, \ l = 0, 1;$$

$$\sigma_n^2 = D^{(0)}(\lambda_n) = D^{(1)}(\lambda_n) = \frac{\left(\theta^0 - \theta^1\right)^T \psi(n) \psi^T(n) \left(\theta^0 - \theta^1\right)}{\sigma^2};$$

$$\mu_n^{(l)} = E^{(l)}(\lambda_n) = \frac{(-1)^{l+1} (\theta^0 - \theta^1)^T \psi(n) \psi^T(n) (\theta^0 - \theta^1)}{2\sigma^2} = \frac{(-1)^{l+1} \sigma_n^2}{2}.$$

Следствие 1. Для модели (12) справедлива теорема 1 со следующими значениями:

$$a_{i}^{(k)} = \int_{C_{-}}^{C_{+}} n_{1}\left(x; \ m_{i}^{(k)}, \ s_{i}^{2}\right) dx; \ q_{ij}^{(k)} = \begin{cases} 1 - a_{i}^{(k)} - a_{j}^{(k)} + a_{ij}^{(k)}, \ i \neq j, \\ 1 - a_{i}^{(k)}, \ i = j; \end{cases}$$

$$a_{ij}^{(k)} = \int_{C_{-}}^{C_{+}} \int_{C_{-}}^{C_{+}} n_{1}\left(x; \ m_{i}^{(k)}, \ s_{i}^{2}\right) n_{1}\left(y; \ x + m_{j}^{(k)} - m_{i}^{(k)}, \ s_{j}^{2} - s_{i}^{2}\right) dx dy, \ ecnu \ i < j, \ a_{ij} = a_{ji}, \ ecnu \ i > j;$$

$$b_i^{(k)} = \int_{C_-}^{C_+} \int_{C_-}^{C_+} \int_{C_-}^{C_+} n_1(x; m_i^{(k)}, s_i^2) n_1(y; x + \mu_{i+1}^{(k)}, \sigma_{i+1}^2) n_1(z; y + m_M^{(k)} - m_{i+1}^{(k)}, s_M^2 - s_{i+1}^2) dx dy dz.$$

Следствие 2. Для модели (12) вероятности ошибок I и II рода УПКОВ (2)—(4) удовлетворяют следующим неравенствам:

$$\alpha_{M} \leq e^{-C_{+}} \left(1 - \beta_{M} \right) + \int_{0}^{C_{+}} \int_{C_{-}}^{C_{+}} n_{1} \left(x; \ m_{M-1}^{(0)}, \ s_{M-1}^{2} \right) n_{1} \left(y; \ x + \mu_{M}^{(0)}, \ \sigma_{M}^{2} \right) dx dy,$$

$$\beta_{M} \leq e^{C_{-}} \left(1 - \alpha_{M} \right) + \int_{C}^{0} \int_{C}^{C_{+}} n_{1} \left(x; \, m_{M-1}^{(1)}, \, s_{M-1}^{2} \right) n_{1} \left(y; \, x + \mu_{M}^{(1)}, \, \sigma_{M}^{2} \right) dx dy.$$

Доказательство. Результат следует из теоремы 2, формулы (6) и следующих неравенств:

$$P_0 \left(N > M, \, \Lambda_M \in \left(0, \, C_+ \right) \right) \leq P_0 \left(\Lambda_{M-1} \in \left(C_-, \, C_+ \right), \, \Lambda_M \in \left(0, \, C_+ \right) \right),$$

$$P_1(N > M, \Lambda_M \in (C_-, 0]) \le P_1(\Lambda_{M-1} \in (C_-, C_+), \Lambda_M \in (C_-, 0]).$$

Следствие доказано.

Отметим, что
$$P_0(\Lambda_M \le 0) = P_1(\Lambda_M > 0) = \Phi\left(\frac{\sqrt{\mathrm{tr}(\Gamma H_M)}}{2\sigma}\right)$$
 для модели (12), где $\Phi(x)$ – функция стан-

дартного нормального распределения. Это значит, что УПКОВ (2)—(4) приводит к одинаковым вероятностям правильного выбора каждой гипотезы на последнем шаге. Рассмотрим класс $\wp(M)$, состоящий из всех линейных комбинаций $x_1, x_2, ..., x_M$, имеющих вид $b^T X_M + c$, где $b = (b_1, b_2, ..., b_M)^T \in \mathbb{R}^M$; $c \in \mathbb{R}$, $\sum_{i=1}^M b_i^2 \neq 0$; $X_M = (x_1, x_2, ..., x_M)^T$, и удовлетворяющих условию

$$P_0(b^T X_M + c \le 0) = P_1(b^T X_M + c > 0). \tag{13}$$

Теорема 3. Для всех $L_M \in \wp(M)$ справедливо неравенство

$$P_0(\Lambda_M \le 0) \ge P_0(L_M \le 0). \tag{14}$$

Доказательство. $L_M \in \mathcal{O}(M) \Rightarrow \exists b \in \mathbb{R}^m, \ c \in \mathbb{R}$ такие, что $L_M = b^T X_M + c$. При справедливой гипотезе $H_k(k=0,1)$ L_M имеет нормальное распределение со следующими параметрами соответственно:

$$E^{(k)}(L_M) = b^T A \theta^{(k)} + c, \ D(L_M) = \sigma^2 b^T b,$$

где

$$A = \begin{pmatrix} \psi_1(1) & \psi_2(1) & \dots & \psi_m(1) \\ \psi_1(2) & \psi_2(2) & \dots & \psi_m(2) \\ \dots & \dots & \dots \\ \psi_1(M) & \psi_2(M) & \dots & \psi_m(M) \end{pmatrix}.$$

Из условия (13) следует, что $E^{(0)}(L_M) = -E^{(1)}(L_M)$ или $c = -\frac{1}{2}b^T A(\theta^0 + \theta^1)$. Следовательно, $E^{(0)}(L_M) = \frac{1}{2}b^T A(\theta^0 - \theta^1)$ и $P_0(L_M \le 0) = \Phi\left(\frac{b^T A(\theta^1 - \theta^0)}{2\sigma\sqrt{b^T b}}\right)$. Тогда неравенство (14) эквивалентно неравенству

$$\frac{b^{T}A(\theta^{1} - \theta^{0})}{\sqrt{b^{T}b}} \le \sqrt{\operatorname{tr}(\Gamma H_{M})}.$$
(15)

Если левая часть (15) отрицательна, то это неравенство тривиально. В противном случае его можно переписать в следующем виде:

$$\left(b^{T} A \left(\theta^{1} - \theta^{0}\right)\right)^{2} \leq b^{T} b \cdot \operatorname{tr}\left(\Gamma H_{M}\right).$$

Преобразуем левую часть:

$$\left(b^{T}A\left(\theta^{1}-\theta^{0}\right)\right)^{2}=\operatorname{tr}\left(b^{T}A\left(\theta^{1}-\theta^{0}\right)\left(\theta^{1}-\theta^{0}\right)^{T}A^{T}b\right)=\operatorname{tr}\left(bb^{T}A\left(\theta^{1}-\theta^{0}\right)\left(\theta^{1}-\theta^{0}\right)^{T}A^{T}\right).$$

Из свойств следа матрицы [15] получаем, что также справедливо неравенство:

$$\left(b^{T}A\left(\theta^{1}-\theta^{0}\right)\right)^{2} \leq \operatorname{tr}\left(bb^{T}\right)\operatorname{tr}\left(A\left(\theta^{1}-\theta^{0}\right)\left(\theta^{1}-\theta^{0}\right)^{T}A^{T}\right) = b^{T}b \cdot \operatorname{tr}\left(\Gamma H_{M}\right).$$

Обозначим: $U = (\xi_1, \xi_2, ..., \xi_M)^T$, $\rho(x, y) = (x - y)^T (x - y)$ – евклидово расстояние между векторами x и y в \mathbb{R}^m . Модель (12) в матричной форме записывается следующим образом: $X_M = A\theta + U$.

Пусть $\operatorname{rank}(A) = m$. Оценка $\hat{\theta}$ параметра θ по методу наименьших квадратов имеет вид [14]: $\hat{\theta} = \left(A^T A\right)^{-1} A^T X_M$, ее распределение вероятностей – нормальное с параметрами $E(\hat{\theta}) = \theta$, $\operatorname{Cov}(\hat{\theta}, \hat{\theta}) = \sigma^2 \left(A^T A\right)^{-1}$. Обозначим $\gamma = \rho(\hat{\theta}, \theta^0) - \rho(\hat{\theta}, \theta^1) = 2(\theta^1 - \theta^0)^T \hat{\theta} + (\theta^0)^T \theta^0 - (\theta^1)^T \theta^1$. Вместо (4) на M-м шаге можно использовать решающее правило:

$$\begin{cases}
принять H0, если γ ≤ 0, \\
принять H1, если γ > 0.
\end{cases}$$
(16)

Теорема 4. В рамках модели наблюдений (12) для последовательного теста (2), (3), (16) справедливы следующие неравенства:

$$P_0 \left(\gamma \leq 0 \right) \leq P_0 \left(\Lambda_M \leq 0 \right), \ P_1 \left(\gamma > 0 \right) \leq P_1 \left(\Lambda_M > 0 \right).$$

Доказательство. Достаточно показать, что $\gamma \in \wp(M)$. Действительно, при справедливой гипотезе $H_k(k=0,1)$ статистика γ имеет нормальное распределение с параметрами:

$$E^{(0)}(\gamma) = -(\theta^{0} - \theta^{1})^{T}(\theta^{0} - \theta^{1}), \ E^{(1)}(\gamma) = (\theta^{0} - \theta^{1})^{T}(\theta^{0} - \theta^{1}),$$

$$D(\gamma) = 4\sigma^2 (\theta^0 - \theta^1)^T (A^T A)^{-1} (\theta^0 - \theta^1).$$

Отсюда
$$P_0(\gamma \le 0) = P_1(\gamma > 0) = \Phi \Bigg(\frac{\left(\theta^0 - \theta^1\right)^T \left(\theta^0 - \theta^1\right)}{2\sigma \sqrt{\left(\theta^0 - \theta^1\right)^T \left(A^T A\right)^{-1} \left(\theta^0 - \theta^1\right)}} \Bigg).$$

Кроме того,

$$\gamma = 2 \left(\theta^{\text{I}} - \theta^{\text{0}}\right)^T \hat{\theta} + \left(\theta^{\text{0}}\right)^T \theta^{\text{0}} - \left(\theta^{\text{I}}\right)^T \theta^{\text{I}} = 2 \left(\theta^{\text{I}} - \theta^{\text{0}}\right)^T \left(A^T A\right)^{-\text{I}} A^T X_M + \left(\theta^{\text{0}}\right)^T \theta^{\text{0}} - \left(\theta^{\text{I}}\right)^T \theta^{\text{I}},$$

т. е. существуют $b \in \mathbb{R}^M$, $c \in \mathbb{R}$ такие, что $\gamma = b^T X_M + c$. Теорема доказана.

Результаты компьютерных экспериментов

Рассмотрим модель наблюдений (12) и гипотезы (1) для следующего случая:

$$m = 4$$
, $\sigma = 1$, $\theta^0 = (1; 1, 5; 1; 2)^T$, $\theta^1 = (1, 1, 1, 1)^T$, $\psi(t) = \left(\frac{1}{t+1}, \frac{t}{50}, \frac{t^2}{10}, \frac{1}{t}\right)^T$.

Обозначим оценки величины $P_0(N \le M)$ методом Монте-Карло, нижнюю и верхнюю границы для $P_0(N \le M)$ в следствии 1 — через \hat{p}_0 , \hat{p}_L , \hat{p}_U соответственно. Количество повторений в методе Монте-Карло равно 100 000. Численные результаты приведены в табл. 1 при справедливости гипотезы H_0 , $\alpha_0 = \beta_0 = 0,1$.

Таблица 1 Нижние и верхние границы для $P_0(N \le M)$ Тable 1 Lower and upper bounds for $P_0(N \le M)$

M	$\hat{p}_{\scriptscriptstyle L}$	\hat{p}_0	\hat{p}_U
20	0,273 10	0,35221	0,40166
25	0,33195	0,42733	0,49885
30	0,40235	0,51368	0,60879
35	0,48128	0,60972	0,72520
40	0,56409	0,69979	0,83900

В табл. 1 значение \hat{p}_0 всегда находится в интервале (\hat{p}_L, \hat{p}_U) . Когда M увеличивается, все значения $\hat{p}_0, \hat{p}_L, \hat{p}_U$ возрастают – увеличивается вероятность завершения теста без усечения.

Обозначим приближения значений α_M , β_M , вычисленные по формулам (11), через $\overline{\alpha}_M$, $\overline{\beta}_M$ соответственно. Метод Монте-Карло использован для вычисления p_- , p_+ . Оценки методом Монте-Карло $(\hat{\alpha}_M, \hat{\beta}_M)$ и приблизительные значения $(\overline{\alpha}_M, \overline{\beta}_M)$ для α_M , β_M представлены в табл. 2 при $\alpha_0 = 0.01$, $\beta_0 = 0.05$.

Таблица 2
Аппроксимация вероятностей ошибок первого и второго рода

Table 2

Error type I and II probabilities approximation

M	$\hat{lpha}_{\scriptscriptstyle M}$	$\bar{\alpha}_{_M}$	$\hat{oldsymbol{eta}}_{\scriptscriptstyle M}$	$\overline{eta}_{\!\scriptscriptstyle M}$
20	0,22488	0,22477	0,223 45	0,22438
25	0,20671	0,20662	0,20703	0,20831
30	0,18661	0,18680	0,18726	0,18963
35	0,16572	0,16596	0,16455	0,16742

Из табл. 2 видно, что приближенные значения $\overline{\alpha}_M$, $\overline{\beta}_M$ близки к их оценкам методом Монте-Карло. Это показывает, что формулы в замечании 2 дают приемлемое приближение для α_M , β_M .

Библиографические ссылки

- 1. Wald A. Sequential analysis. New York: John Wiley and Sons. 1947.
- 2. Харин А. Ю. Робастность байесовских и последовательных статистических решающих правил. Минск: БГУ, 2013.
- 3. Govindarajulu Z. Sequential statistics. Singapore: World Sci. Publ., 2004.

- 4. *Kharin A., Kishylau D.* Robust sequential testing of hypotheses on discrete probability distributions // Austrian J. Stat. 2005. Vol. 34, № 2. P. 153–162. DOI: 10.17713/ajs.v34i2.408.
- 5. Kharin A. Y. Performance and robustness evaluation in sequential hypotheses testing // Commun. in Stat. Theory and Methods. 2016. Vol. 45, issue 6. P. 1693–1709. DOI: 10.1080/03610926.2014.944659.
- 6. Galinskij V., Kharin A. On minimax robustness of Bayesian statistical prediction // Prob. Theory Math. Stat. Vilnius : TEV, 1999. P. 259–266.
- 7. Kharin A. Y. Robust Bayesian prediction under distortions of prior and conditional distributions // J. Math. Sci. 2005. Vol. 126, issue 1. P. 992–997. DOI: 10.1007/PL00021966.
- 8. *Харин А. Ю.*, *Тон Т. Т.* Последовательная статистическая проверка гипотез о параметрах временных рядов с трендом при пропусках наблюдений // Изв. НАН Беларуси. Сер. физ.-мат. наук. 2016. № 3. С. 38—46.
- 9. Kharin A., Ton That Tu. Performance and robustness analysis of sequential hypotheses testing for time series with trend // Austrian J. Stat. 2017. Vol. 46, № 3–4. P. 23–36. DOI: 10.17713/ajs.v46i3-4.668.
 - 10. Rao C. R. Linear statistical inference and its applications. New York: Wiley, 1965.
 - 11. Kounias E. G. Bounds for the probability of a union, with applications // Ann. Math. Stat. 1968. Vol. 39, № 6. P. 2154–2158.
 - 12. Bilodeau M., Brenner D. Theory of multivariate statistics. New York: Springer; Verlag, 1999.
 - 13. Hunter D. An upper bound for the probability of a union // J. Appl. Probab. 1976. Vol. 13, issue 3. P. 597–603. DOI: 10.2307/3212481.
 - 14. Андерсон Т. Статистический анализ временных рядов. М.: Мир, 1976.
- 15. Coope I. D. On matrix trace inequalities and related topics for products of Hermitian matrices // J. Math. Anal. Appl. 1994. Vol. 188, issue 3. P. 999–1001. DOI: 10.1006/jmaa.1994.1475.

References

- 1. Wald A. Sequential analysis. New York: John Wiley and Sons, 1947.
- 2. Kharin A. Y. Robastnost' baiesovskikh i posledovatel'nykh statisticheskikh reshayushchikh pravil [Robustness of Bayesian and sequential statistical decision rules]. Minsk: BSU, 2013 (in Russ.).
 - 3. Govindarajulu Z. Sequential statistics. Singapore: World Sci. Publ., 2004.
- 4. Kharin A., Kishylau D. Robust sequential testing of hypotheses on discrete probability distributions. *Austrian J. Stat.* 2005. Vol. 34, No. 2. P. 153–162. DOI: 10.17713/ajs.v34i2.408.
- 5. Kharin A. Y. Performance and robustness evaluation in sequential hypotheses testing. *Commun. in Stat. Theory and Methods*. 2016. Vol. 45, issue 6. P. 1693–1709. DOI: 10.1080/03610926.2014.944659.
- Galinskij V., Kharin A. On minimax robustness of Bayesian statistical prediction. Prob. Theory Math. Stat. Vilnius: TEV, 1999.
 P. 259–266.
- 7. Kharin A. Y. Robust Bayesian prediction under distortions of prior and conditional distributions. *J. Math. Sci.* 2005. Vol. 126, issue 1. P. 992–997. DOI: 10.1007/PL00021966.
- 8. Kharin A. Y., Ton T. T. [Sequential statistical hypotheses testing on parameters of time series with trend under missing values]. *Proc. of the Natl. Acad. of Sci. of Belarus. Phys.-math. ser.* 2016. No. 3. P. 38–46 (in Russ.).
- 9. Kharin A., Ton That Tu. Performance and robustness analysis of sequential hypotheses testing for time series with trend. *Austrian J. Stat.* 2017. Vol. 46, No. 3–4. P. 23–36. DOI: 10.17713/ajs.v46i3-4.668.
 - 10. Rao C. R. Linear statistical inference and its applications. New York: Wiley, 1965.
 - 11. Kounias E. G. Bounds for the probability of a union, with applications. *Ann. Math. Stat.* 1968. Vol. 39, No. 6. P. 2154–2158.
 - 12. Bilodeau M., Brenner D. Theory of multivariate statistics. New York: Springer; Verlag, 1999.
 - 13. Hunter D. An upper bound for the probability of a union. *J. Appl. Probab.* 1976. Vol. 13, issue 3. P. 597–603. DOI: 10.2307/3212481.
 - 14. Anderson T. Statisticheskii analiz vremennykh ryadov [Statistical analysis of time series]. Moscow: Mir, 1976 (in Russ.).
- 15. Coope I. D. On matrix trace inequalities and related topics for products of Hermitian matrices. *J. Math. Anal. Appl.* 1994. Vol. 188, issue 3. P. 999–1001. DOI: 10.1006/jmaa.1994.1475.

Статья поступила в редколлегию 02.11.2017. Received by editorial board 02.11.2017.