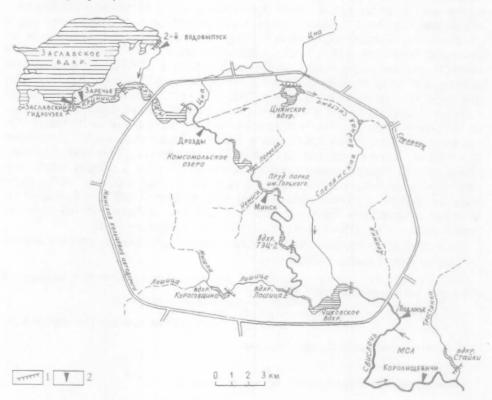
География


УДК 556.18

А.А. МАКАРЕВИЧ

АНТРОПОГЕННЫЕ ГИДРОЛОГИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ РЕК г. МИНСКА

The article describes various factors of man's activity most greatly affecting the quantitative hydrological characteristics of rivers in Minsk.

В гидрологическом отношении практически вся территория г. Минска приурочена к бассейну р. Свислочь, ее верхнему течению. Основными притоками Свислочи в пределах и окрестностях города являются: левые - Цна, Переспа, Слепянка, Дражня, Тростянка, правые - Немига, Лошица (с притоком Мышка), Сенница (рисунок).

Гидрографическая схема г. Минска: 1 – плотины водохранилищ и прудов; 2 – водпосты Госкомгидромета РБ

В результате интенсивных хозяйственных мероприятий морфометрические характеристики и гидрологический режим р. Свислочь и ее притоков

претерпели значительное преобразование. Из всех видов хозяйственной деятельности наиболее существенное влияние оказали: переброска стока из бассейна р. Вилия по Вилейско-Минской водной системе (ВМВС); создание каскада искусственных водоемов в пределах города и выше него; регулирование и обустройство русла реки; изъятие воды из поверхностных и подземных источников для водоснабжения города с последующим сбросом отработанных вод через Минскую станцию аэрации (МСА); изменения условий формирования стока, связанных с урбанизацией.

Для изучения происшедших изменений параметров гидросети и гидрологического режима были проанализированы данные Государственного водного кадастра (ГВК) по гидрографии в пределах г. Минска и его окрестностей, картографические источники как последних, так и прошлых лет топосъемки, а также литературные источники. Гидрологический режим рек г. Минска и тенденции его изменений в результате хозяйственной деятельности изложены в работах [1–3], однако в настоящее время в результате интенсивно проводимой хозяйственной деятельности они уже устарели. В наиболее полном виде гидрологические исследования в г. Минске были проведены под руководством автора во второй половине 1990-х гг. Центральным НИИ комплексного использования водных ресурсов при составлении территориальных комплексных схем охраны окружающей среды и при обосновании и выделении водоохранных зон и прибрежных полос водотоков и водоемов г. Минска и Минского района.

Главная водная артерия Минска — р. Свислочь — входит в состав ВМВС, введенной в эксплуатацию в 1976 г. в целях более полного обеспечения промышленности и населения города водой, обводнения и водного благоустройства [4]. Вода по системе подается в Заславское водохранилище, из которого затем в р. Свислочь по двум водовыпускам. Объем первого (основного) регистрируется на гидропосту Заславский гидроузел (ГЭС Гонолес). Второй водовыпуск представляет собой канал длиной почти 4 км (в среднем его течении построена трасса водного слалома), впадающий в водохранилище Дрозды. Режим подачи воды по нему неустойчив.

Из Заславского водохранилища (площадь зеркала 25,6 км²; полный объем 86,1 млн м³) через основной гидроузел вода поступает в водохранилища Криница (1,2 км²; 3,0 млн м³) и Дрозды (2,4 км²; 6,2 млн м³). Далее вода из водохранилища Дрозды частично подается по напорному водоводу (максимальный расход воды 1,6 м³/с) в наливное Цнянское водохранилище (0,9 км²; 2,1 млн м³) – головное сооружение Слепянской водной системы (СВС), входящей в состав ВМВС.

Кроме подачи воды в СВС, из водохранилища Дрозды вода забирается на техническое водоснабжение (около 20 млн $\rm M^3$ /год) промышленных предприятий города. Ниже водохранилища вода поступает на обводнение р. Свислочь с каскадом искусственных водоемов — Комсомольское озеро (0,34 км²; 1,5 млн м³), пруд парка им. М. Горького (0,05 км²; 0,06 млн м³), водохранилище ТЭЦ-2 (0,3 км²; 0,36 млн м³), водохранилище ТЭЦ-3, или Чижовское (2,8 км²; 5,6 млн м³).

Объемы переброски стока по BMBC колеблются по годам, причем в холодный период года до 3–5, в теплый – до 8–11 м³/с. что значительно уступает проектной номинальной производительности системы, равной 12 м³/с (382 млн м³/год). Таким образом, режим обводнения р. Свислочь для обеспечения в теплый период года дополнительного поступления воды, сверх необходимой для водоснабжения города (в целях интенсификации процессов самоочищения реки), не полностью соответствует принятым в проекте BMBC нормативам, что снижает экологическую и рекреационную ценность реки. Более того, объем переброски постепенно сокращается из-за удорожания электроэнергии, необходимой для подачи воды из Вилейского водохранилища на высоту водораздела 75 м.

Городские водозаборы подземных вод функционируют как на самом водосборе р. Свислочь, так и за его пределами. Переброска подземного стока из соседних водосборов в зону г. Минска достигла 3 м⁻/с. Практически все основные сбросы отработанных вод проходят через МСА, водовыпуск которой находится в 6 км ниже Чижовского водохранилища. Среднегодовой расход сбросных вод составляет около 9 м³/с.

В пределах и окрестностях города наиболее изученной в гидрологическом отношении является р. Свислочь, на которой в разное время действовало несколько водпостов, где велись систематические наблюдения за ее гидрологическим режимом (табл. 1). На входе в город – это ныне закрытые водпосты Заречье (1933–1962 гг.) и Дрозды (1975–1981 гг.), а также Заславский гидроузел (функционирует с 1959 г.). В центре города ранее существовал водпост Минск (1947–1957 гг.). На выходе из города ниже водовыпуска сточных вод (МСА) с 1973 г. действует водпост Королищевичи.

Гидрологическая изученность р. Свислочь

Таблица 1

Водпост	Расстояние от устья км	2		Частота наблюдений
Заславский гидроузел	276,4	596	1959 – действует	Ежесуточно
Заречье	276	624	1933-1962	
Дрозды	259	731	1975-1981	_"_
Дрозды	259	731	1982 – действует	Ежемесячно
Минск	251	777	1947-1957	Ежесуточно
Подлосье	225	990	1984 –действует	Ежемесячно
Королищевичи	213	1060	1973 – действует	Ежесуточно

Кроме стандартных гидрологических наблюдений, Госкомгидрометом ежемесячно измеряются расходы воды в пунктах отбора ее проб на качество: в створе бывшего водпоста Дрозды и у д. Подлосье – ниже города перед выпуском сточных вод МСА. На некоторых малых реках города производились лишь отдельные эпизодические измерения расходов воды при экспедиционных исследованиях. Эти материалы послужили в качестве вспомогательных для расчетов характеристик стока р. Свислочь.

Таблица 2 Изменение стока р. Свислочь в створе водпостов Дрозды и Королищевичи

Vanauranus una stauta	Расход воды. м*/с		Коэффициент изменения стока	
Характеристика стока	естественный	После создания ВМВС		
	Водпост Д	розды		
Среднегодовой	5,25	10,5	2,0	
Минимальный из среднемесячных летних	1,55	9,29	6,0	
Минимальный из среднемесячных зимних	1,39	5,39	3,9	
Максимальный мгновенный	217	24,8	0,11	
	Водпост Коро	пищевичи		
Среднегодовой	7,61	18,5	2,4	
Минимальный из среднемесячных летних	2,24	14,8	6,6	
Минимальный из среднемесячных зимних	2,03	12,0	5,9	
Максимальный мгновенный	315	49,7	0,16	

Как видно из табл. 2, в результате антропогенного преобразования за период после введения ВМВС в эксплуатацию среднегодовой сток р. Свислочь увеличился по сравнению с естественным в 2,0–2,4 раза, причем наиболее значительно – ниже города за счет сброса сточных вод МСА, более 80 % которых образовалось после использования подземных вод, поступивших из бассейнов как самой р. Свислочь, так и соседних рек Птичь, Волма, Уздянка. Распределе-

ние стока р. Свислочь во внутригодовом (так же как и в многолетнем) разрезе стало более равномерным и значительно отличается от естественного как за счет регулирования стока водохранилищами, так и за счет более интенсивной подачи воды по ВМВС в летний период в целях обводнения р. Свислочь и создания более благоприятных условий водообмена в черте города. Произошло, с одной стороны, значительное (в 4–6 раз) увеличение значений минимального среднемесячного зимнего и летнего стока, а с другой — уменьшение (в 8 раз) максимальных расходов воды. Кроме того, в результате спрямления, регулирования и обустройства русла, строительства каскада водохранилищ и прудов длина р. Свислочь в пределах Минска (на участке от плотины Заславского водохранилища до водовыпуска МСА) сократилась на 12 км (с 63 до 51 км).

В отличие от р. Свислочь сток малых рек и ручьев в большинстве случаев существенно снизился вследствие частичного или полного пересыхания. Наиболее чувствительно малые реки реагировали на снижение уровня подземных вод при их интенсивном отборе, а также на изменения условий формирования стока, связанных с градостроительством. Интересно проследить, как преобразовались притоки Свислочи (сверху вниз по ее течению) в пределах нынешней городской черты Минска.

Река Цна впадает в р. Свислочь слева, в 1 км ниже плотины водохранилища Дрозды. Берет начало в 0,7 км севернее д. Малиновка; длина реки 14 км, площадь водосбора 70 км². Ее русло почти на всем протяжении (кроме приустьевого участка длиной 1 км) отрегулировано. В меженный период верховье реки в результате эксплуатации водозабора Боровляны пересыхает на протяжении 2 км. В среднем и нижнем течениях, где расположен групповой водозабор подземных вод Новинки, потери речного стока частично компенсируются фильтрацией воды из дамбы наливного Цнянского водохранилища (площадь зеркала 0,87 км²; полный объем 2,1 млн м). созданного на левобережной части водосбора реки в 1981 г. В результате хозяйственной деятельности объем годового тока уменьшился с 15,5 до 12 млн м³/год.

Ручей Переспа впадает в р. Свислочь слева, в 250 м ниже плотины Комсомольского озера. В естественном состоянии он имел длину 3 км, площадь водосбора 13 км², объем годового стока 2,0 млн м³/год. Ныне от верховьев ручья сохранились следы канализированного русла между улицами Некрасова, Карастояновой и Богдановича. В среднем течении на участке, параллельном ул. Кропоткина, ручей заключен в подземный ливневый коллектор Комаровский (его приустьевый участок открытый), принимающий, кроме ливневых вод, также и нормативно очищенные сточные воды близлежащих промышленных предприятий.

Река Немига впадала в р. Свислочь справа (в районе нынешней площади 8-е Марта), имела длину 4–5 км, площадь водосбора 5 км², объем годового стока 1 млн м³. Один из истоков реки находился недалеко от нынешнего железнодорожного остановочного пункта Институт культуры, другой – в районе ул. Волоха. Ныне река как природный объект не существует: ее русло заключено в подземный ливневый коллектор Центр.

Река Лошица впадает в р. Свислочь справа, в 1 км выше Чижовского водохранилища. Длина ее в естественном состоянии 12 км, площадь водосбора 67 км. Истоки реки (в настоящее время пересохшие) находятся за Минской кольцевой автодорогой юго-западнее д. Дворецкая Слобода. Под влиянием эксплуатации водозабора подземных вод Петровщина длина реки сократилась до 7 км. В районе ул. Семашко до слияния с р. Мышка (длина которой уменьшилась с 7 до 2 км) р. Лошица принимает воды мощного ливневого коллектора Слепянка, собирающего ливневые и нормативно очищенные стоки предприятий западной части города, полностью компенсирующие потери стока в среднем и нижнем течении реки. В результате объем речного стока увеличился по сравнению с естественным с 14 до 30 млн м³/год. Длина р. Мышка – левого притока р. Лошица – в естественном состоянии составляла 7 км, площадь водосбора 39 км². В настоящее время под влиянием многолетней эксплуатации группового водозабора подземных вод Петровщина длина реки сократилась до 2 км.

В целях благоустройства прилегающих районов г. Минска и технического водоснабжения расположенных здесь промышленных предприятий намечается построить Лошицкую водную систему. Согласно проекту свое начало эта система будет брать от водохранилища Дрозды, откуда вода будет подаваться с расходом около 1,5 м³/с по напорному водоводу в головное водохранилище на ул. Притыцкого. Далее система будет проходить по бывшим руслам рек Мышка и Лошица.

Всего намечается создать 7 водоемов, не считая двух, уже построенных на р. Лошица — водохранилища Курасовщина (площадь зеркала $0.21~{\rm km}^2$; полный объем $0.37~{\rm млн}~{\rm m}^3$) и пруда в устье реки $(0.07~{\rm km}^2;~0.09~{\rm млн}~{\rm m}^3$ соответственно). Общая длина системы составит около 20 км, суммарная площадь зеркала водоемов — $0.9~{\rm km}^2$, суммарный объем — $1.5~{\rm млн}~{\rm m}^3$.

Река Слепянка ранее впадала в р. Свислочь (слева), а ныне – в Чижовское водохранилище. В естественном состоянии ее длина достигла 17 км, площадь водосбора 88 км². В 1979–1983 гг. в среднем и нижнем течении русло реки на протяжении 13 км было отрегулировано и преобразовано в трассу канала внутригородской Слепянской водной системы (СВС). Ныне пересохшее (под влиянием водозабора подземных вод Зеленовка) верховье р. Слепянка – от истока в районе Академгородка до слияния с системой – имеет длину около 4 км, площадь водосбора около 20 км².

Вода в СВС подается из Цнянского водохранилища самотеком по каскаду водоемов в отрегулированное русло р. Слепянка. Эта система была создана в целях благоустройства прилегающих восточных и юго-восточных районов г. Минска и технического водоснабжения расположенных здесь промышленных предприятий. Общая длина системы (от водохранилища Дрозды до водохранилища Чижовское) 26 км, а общая площадь зеркала ее водоемов более 0,6 км². Для предотвращения загрязнения вдоль всей трассы СВС функционирует магистральный городской ливневый коллектор Слепянка, перехватывающий поверхностный сток с городской территории, а также нормативно очищенные сточные воды предприятий г. Минска. Объем годового стока по системе в настоящее время составляет 8 млн м³ (против 17 млн м³ стока р. Слепянка в естественных условиях).

Ручей Дражня впадал в р. Свислочь слева в районе пересечения ее с Минской кольцевой автодорогой, в 3 км ниже плотины Чижовского водохранилища и в 2 км выше выпуска сточных вод МСА. Исток ручья находился у д. Слепянка (ныне жилой микрорайон в черте г. Минска). Длина достигала 10 км, площадь водосбора 15 км², объем стока 2,4 млн м³/год. В настоящее время в результате работы водозабора подземных вод Дражня ручей полностью пересох, практически весь поверхностный сток перехватывается ливневым коллектором Дражня, отводящим также и отработанные воды близлежащих предприятий в р. Свислочь в районе бывшего устья р. Дражня. Долина реки прослеживается на местности вдоль улиц Солтыса, Алтайской, у пригородной автостанции Автозаводская.

Река Тростянка впадает в р. Свислочь слева, в 12 км ниже водовыпуска МСА и в 3 км ниже водпоста Королищевичи. Длина ее в естественном состоянии достигала 13 км, площадь водосбора 86 км. Свое начало река брала в 2 км к северо-востоку от д. Б. Тростенец В русле реки в нижнем течении у д. Ельница создано водохранилище Стайки (площадь зеркала 0,15 км²; полный объем 0,18 млн м²). В результате эксплуатации водозабора подземных вод Дражня река в верхнем и среднем течениях пересыхает, что ведет к снижению проточности воды в водохранилище Стайки, а следовательно, к ухудшению ее каче-

ства и условий отдыха городского населения в зоне, имеющей важное рекреационное значение. По выполненной оценке объем стока р. Тростянка уменьшился с 16,4 до 10 млн м³/год.

Анализ происшедших изменений гидрографической сети и гидрологического режима показал, что для повышения рекреационной ценности р. Свислочь и ее притоков в пределах г. Минска необходимо проведение комплекса мероприятий по охране вод, включающего, с одной стороны, увеличение объемов переброски стока по ВМВС, с другой — разработку рекомендаций по организации природоохранных, планировочных и градостроительных мероприятий, сохранению и восстановлению рек и ручьев как объектов природы, имеющих большую ландшафтообразующую и эстетическую ценность.

- 1. Дрозд В. В., Гущин В. И. // Комплексное использование водных ресурсов. 1977. Вып. 6. С. 81.
- 2. Дрозд В. В., Макаревич А. А., Петлицкий Е. Е. // Вопросы рационального использования водных ресурсов. М., 1989. С. 45.
- 3. Жуков Д. Ф., Малижонок М. И. // Вопросы гидравлики и инженерной гидрологии. М 1989 С.86
- 4. Плужников В. Н., Станкевич Р. А., Малижонок М. И. Вилейско-Минская водная система. Мн., 1987.

Поступила в редакцию 03.05. 2000.

Макаревич Александр Александрович – кандидат географических наук.

УДК 551.243

АЛЬГИРДАС ГАЙГАЛАС (Литва)

ИЗУЧЕНИЕ ПОГРЕБЕННЫХ ДОЛИН В ТРУДАХ Г.И. ГОРЕЦКОГО (к 100-летию со дня рождения)

The article is devoted to the basic scientific idea of the academ ician of BAS-buried valleys of glacial ploughing and eroding (washing away). On the best example of Belarus.

Погребенные переуглубления в четвертичном ложе ледниковой области Европы представляют собой уникальное явление в геологии. Выяснение истинной природы этого явления являлось величайшей задачей геологии двадцатого столетия. В решение этой задачи крупнейший вклад внес Гавриил Иванович Горецкий многочисленными фундаментальными работами по прадолинам и палеодолинам великих рек Русской равнины (Горецкий, 1956, 1964, 1966, 1970). Три его монографии (Горецкий, 1964, 1966, 1970), касающиеся развития великих русских рек Волги, Камы и Днепра, были удостоены государственной премии в 1971 г.

Академик Г.И. Горецкий заложил основы учения о погребенных речных долинах, ледниковых ложбинах и палеогеографических аренах. Геологические результаты его исследований в первую очередь использовались белорусскими учеными (Кузнецов, 1979, Матвеев и др., 1988 и др.). С 1970 г. комиссия по изучению четвертичного периода при Совете наук о земле Академии наук СССР, председателем которой был Г.И. Горецкий, выдвинула идею изучать в ледниковых областях ископаемые долины и ложбины ледникового выпахивания и размыва по единой программе. В этих исследованиях в 1972—1975 гг. участвовал и сектор четвертичной геологии и геоморфологии Литовского научно-исследовательского геологоразведочного института («Погребенные палеоврезы ...», 1976).

Для решения научных проблем в области погребенных переуглублений и их изучения Г.И. Горецкий применил методы палеопотамологии, которые усовершенствовал и развил. Их использование дало возможность получить новые результаты, накопить огромный фактический материал. Палеопотамологическое направление в трудах Г.И. Горецкого заслуживает отдельного обсуждения, поэтому здесь не будем подробно его рассматривать.