А.П. СТАРОВОЙТОВ

СУЩЕСТВОВАНИЕ АБСОЛЮТНО НЕПРЕРЫВНЫХ ФУНКЦИЙ С ЗАДАННОЙ ПОСЛЕДОВАТЕЛЬНОСТЬЮ НАИЛУЧШИХ РАЦИОНАЛЬНЫХ ПРИБЛИЖЕНИЙ

For a fixed sequence $\{a_n\}_{n=0}^T$ of non-negative real numbers strictly decreasing to zero a absolutely continuous 2π -periodic function f is constructed such that $R_n^T(f) = a_n$, n=0, 1, 2, ..., where the $R_n^T(f)$ are the best approximations of f in the uniform norm by rational trigonometric functions of degree at most n.

Обозначим через $C_{2\pi}$ ($C_{2\pi}^*$) банахово пространство действительных (комплекснозначных) 2π -периодических непрерывных функций, а $C^*(E)$ — банахово пространство непрерывных на компакте $E \subset \mathbf{R}$ комплекснозначных функций. Пусть $R_n^T(f)$ ($R_n^{*,T}(f)$) — наилучшие приближения функции $f \in C_{2\pi}$ ($C_{2\pi}$) тригонометрическими рациональными функциями с действительными (комплексными) коэффициентами степени не выше $n=0,1,2,\ldots$ Аналогично $R^*(f,E)$ — наилучшие приближения алгебраическими рациональными функциями с комплексными коэффициентами.

Е.П. Долженко [1] установил, что, если для $f \in C^*(E)$ $\sum_{n=0}^{\infty} R_n^* (f, E) < + \infty \Longrightarrow f - aбсолютно непрерывна на <math>E$.

Им же показано, что наилучшие рациональные приближения $R^*(f, E)$ абсолютно непрерывной функции f могут стремиться к нулю сколь угодно медленно (см. [2]), т. е. обратное утверждение не имеет места. Позже А.А. Пекарский обнаружил [3], что теорема Е.П. Долженко справедлива и в $C_{2\pi}$: если $f \in C_{2\pi}$ и $\sum_{n=0}^{\infty} R_n^{*,T}(f,E) < +\infty$ f — абсолютно непрерывна на $[-\pi,\pi]$.

В данной работе получено существенное продвижение в решении следующей проблемы (подробнее см. [4, 5]): какой должна быть последовательность $\{a_n\}_{n=0}^\infty$ действительных чисел, чтобы существовала такая абсолютно непрерывная функция $f \in C_{2n}$, для которой

$$R_n^T(f) = a_n, \ n = 0, 1, 2, \dots$$
 (1)

Хорошо известно (см., например, [6]), что для любой $f \in C_{2\pi} \ R_0^T(f) \ge R_1^T(f) \ge R_2^T(f) \ge \dots \ge 0$ и $\lim R_n^T(f) = 0$. Следовательно, для

справедливости (1) необходимо, чтобы последовательность $\{a_n\}_{n=0}^\infty$ не возрастала и сходилась к нулю.

Теорема. Пусть последовательность $\{a_n\}_{n=0}$ удовлетворяет условиям:

1)
$$a_0 > a_1 > a_2 > ... > 0$$
, 2) $\sum_{n=0}^{\infty} a_n < +\infty$.

Тогда существует такая нечетная абсолютно непрерывная функция $g \in C_{2\pi}$, что

$$R_n^T(g) = a_n, n = 0, 1, 2, \dots$$

Без ограничения общности можно считать, что a_0 =1. Положим при n=0, 1, 2, ...

$$\Delta a_n = a_{n-1} - a_n$$
, $\varepsilon_n = \min\{\Delta a_1, \Delta a_2, ..., \Delta a_n\}$,
 $\beta_n = \frac{\varepsilon_1}{5}, \frac{\varepsilon_2}{5}, ..., \frac{\varepsilon_n}{5}, c_n = \frac{1 - \beta_k^2}{1 + \beta_k^2}, k = 0, 1, 2, ...$

Введем в рассмотрение синус-дроби Чебышева - Маркова [7]

$$V_n(x) = \sin \varphi_{2n}(x) = \sqrt{1-x^2} \frac{P_{n-1}(x)}{\prod_{i=1}^{n} (1-c_i x)},$$

где $P_{n-1}(x)$ — алгебраический полином степени n-1 с действительными коэффициентами.

В банаховом пространстве c_0 последовательностей $t=(t_0, t_1, t_2, ...)$, сходящихся к нулю, с нормой $||t||=\sup\{|t_n|:n=0, 1, 2, ...\}$ определим выпуклое компактное множество

$$K = \{t : 0 \le t_k \le \varepsilon_k, k = 0, 1, 2, \dots \}.$$

Если $t \in K$, то, полагая $\Delta t_k = t_{k-1} - t_k$, рассмотрим функцию

$$f_t(\theta) = \sum_{k=1}^{\infty} (\Delta a_k + \Delta t_k) \sin \theta \frac{P_{k-1}(\cos \theta)}{\prod_{j=1}^{k} (1 - c_j \cos \theta)}.$$
 (2)

Ряд (2) равномерно сходится, поэтому функция $f \in C_{2\pi}$ и является нечетной. При выполнении условий теоремы в [5] установлено, что отображение $\Pi: c_0 \to c_0$, $\Pi(t) = \{a_n + t_n - R_n^T(f_t)\}_{n=0}^{\infty}$ непрерывно отображает K в себя.

Поэтому по теореме Шаудера существует $t^*=(t_0,\ t_1^*,\ t_2^*,\ \ldots)\in K$, для которой $\Pi(t^*)=t^*$, т. е.

$$R_n^T(f_{\bullet^*}) = a_n, n = 0, 1, 2, \dots$$

Покажем, что функция $g - f_{l} \in C_{2\pi}$ является искомой. Для этого осталось доказать, что в условиях теоремы g является абсолютно непрерывной. Сделаем это методом, отличным от предложенного в [1], опираясь лишь на свойства дробей Чебышева – Маркова.

Лемма 1.

$$\sum_{n=0}^{\infty} a_n < +\infty \iff \sum_{k=1}^{\infty} k \ \Delta a_k < +\infty.$$

Доказательство. С помощью преобразования Абеля получим

$$\sum_{k=1}^{n} k \ \Delta a_k = a_0 + a_1 + \ldots + a_n$$
.

Отсюда следует утверждение леммы 1.

Лемма 2. Справедливо равенство

$$I_n = \int_{-\pi}^{\pi} | \left[\mathbf{v}_n(\cos \theta) \right]' | d\theta = 4n.$$

Доказательство. Учитывая, что (см. [7]) $\phi_{2n}(x) \le 0$, $x \in [-1, 1]$, получаем:

$$I_{n} = \int_{-\pi}^{\pi} \left| \cos \varphi_{2n}(\cos \theta) \varphi_{2n}(\cos \theta) \sin \theta \right| d\theta = 2 \int_{0}^{\pi} \left| \cos \varphi_{2n}(\cos \theta) \right| d\varphi_{2n}(\cos \theta) =$$

$$= -2 \int_{-\pi}^{\pi} \left| \cos \varphi_{2n}(x) \right| d\varphi_{2n}(x).$$

Так как функция $\phi_{2n}(x)$ монотонно убывает на отрезке [-1, 1] и

$$\varphi_{2n}(-1)=2n\pi, \varphi_{2n}(1) n\pi,$$

то отрезок [-1, 1] можно разбить на n отрезков [a_k , b_k], k=1, 2, ..., n, пересекающихся только своими концами, каждый из которых отображается $\phi_{2n}(x)$ биективно на отрезок, длина которого равна π . Поэтому

$$I_n = -2n \int_{a_n}^{b_k} |\cos \varphi_{2n}(x)| d\varphi_{2n}(x) = 2n \int_{0}^{\pi} |\cos t| dt = 4n$$
.

Лемма доказана.

Лемма 3. Если ряд $\sum_{\nu=1}^{\infty} f_{\nu}(x)$, составленный из функций $f_{\nu} \in C_{2\pi}$ абсолютно непрерывных на [-1, 1], сходится в некоторой точке $\xi \in [-\pi, \pi]$ и

$$\sum_{k=1}^{\infty} \int_{-\pi}^{\pi} f_k'(x) dx < +\infty, \tag{3}$$

то этот ряд равномерно сходится к абсолютно непрерывной функции $f \in C_{2\pi}$. Доказательство. В силу теоремы Лебега [8] из (3) следует сходимость почти всюду ряда $\bar{S}(x) = \sum_{k=1}^{\infty} |f_k'(x)|$, следовательно, и ряда $\sum_{k=1}^{\infty} f_k'(x)$. Функция S(x) интегрируема на $[-\pi, \pi]$, так как

$$\int_{-\pi}^{\pi} |S(x)| dx = \sum_{k=1}^{\infty} \int_{-\pi}^{\pi} |f'_k(x)| dx < +\infty,$$

и почти всюду на $[-\pi, \pi] \mid \sum_{k=1}^m f_k'(x) \mid \le S(x)$ при любом m. Поэтому (теорема Лебега) законен предельный переход под знаком интеграла:

$$f(x) = \lim_{k \to \infty} \sum_{k=1}^{m} \{ f_k(\xi) + \int_{\xi}^{x} f'_k(t) dt \} = f(\xi) + \int_{\xi}^{x} \{ \sum_{k=1}^{\infty} f'_k(t) \} dt.$$

Отсюда следует абсолютная непрерывность функции f. Лемма доказана. Положим теперь

$$f_k(\theta) = (\Delta a_k + \Delta t_k) \sin \theta \frac{P_{k-1}(\cos \theta)}{\prod_{j=1}^{k} (1 - c_j \cos \theta)}$$

Так как при $t \in K|\Delta t_k| \le \Delta a_k$, то в силу условий теоремы и леммы 1

$$\sum_{k=1}^{\infty} \int_{-\pi}^{\pi} |f_k'(\theta)| d\theta \le 2 \sum_{k=1}^{\infty} \Delta a_k \int_{-\pi}^{\pi} |[v_n(\cos \theta)]'| d\theta = 8 \sum_{k=1}^{\infty} k \Delta a_k < +\infty.$$

Для завершения доказательства теоремы остается применить лемму 3.

С одной стороны, полученные в теореме достаточные условия на последовательность $\{a_n\}_{n=0}^\infty$ не совпадают с минимальными необходимыми условиями. С другой стороны, как было отмечено, наилучшие рациональные приближения абсолютно непрерывной функции могут стремиться к нулю сколь угодно медленно. В этой связи вполне вероятно, что условие 2) в теореме можно ослабить до необходимого условия $\lim a_n = 0$.

Результаты данной статьи анонсированы в материалах [9–10].

- 1. Долженко Е.П. // Мат. сб. 1962. Т. 56 (98). С. 403.
- 2. Гончар А.А. // Труды Международного конгресса математиков. М., 1966. С. 329.
- 3. Пекарский А.А. // Мат. сб. 1982. Т. 117 (159). С. 114.
- 4. Долженко Е.П. // Мат. заметки. 1967. Т. 1. № 3. С. 313.
- 5. Старовойтов А.П. // Мат. сб. 2000. Т. 191. № 6. С. 145.
- 6. Ахиезер Н.И. Лекции по теории аппроксимации. М., 1965.
- 7. Русак В. Н. Рациональные функции как аппарат приближения. Мн., 1979.
- 8. Антоневич А.Б., Радыно Я.В. Функциональный анализ и интегральные уравнения. Мн., 1984.
- 9. Старовойтов А.П. // Воронежская зимняя математическая школа. Воронеж, 2001. С. 41
- 10. Он же. Аналитические методы анализа и дифференциальных уравнений: Тез. докл. междунар. конф. Мн., 2001. С. 156.

Поступила в редакцию 17.05.2001.

Александр Павлович Старовойтов – кандидат физико-математических наук, доцент, докторант кафедры высшей математики и математической физики.

