БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Ультилаю Поректор по учелной работе А.Л. Толстик Регистрационный № УД-/251/уч.

введение в системную биологию

Учебная программа учреждения высшего образования по учебной дисциплине для специальности:

1-31 03 04 Информатика

Учебная программа составлена на основе образовательного стандарта высшего образования ОСВО 1-31 03 04-2013 и учебного плана УВО №G31-169/уч. 2013 г., №G31-192/уч.2013 г.

СОСТАВИТЕЛИ:

Г.И. Николаев – ассистент кафедры «Биомедицинской информатики» Белорусского государственного университета.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ: '

Кафедрой «Биомедицинской информатики» факультета прикладной математики и информатики

(протокол № 1 от 24 апреля 2017 г.)

Учебно-методической комиссией факультета прикладной математики и информатики (протокол № 5 от 16 мая 2017 г.)

dipon

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Системная биология — активно развивающаяся междисциплинарная область науки, образовавшаяся на стыке биологии и теории сложных систем, которая анализирует сложные биологические системы с учетом их многокомпонентности, наличия прямых и обратных связей, а также разнородности экспериментальных данных. Основное внимание в системной биологии уделяется свойствам биологических систем, которые невозможно объяснить только с точки зрения свойств ее компонентов. Таким образом, задачами системной биологии являются исследование и моделирование свойств сложных биологических систем, которые нельзя объяснить суммой свойств ее составляющих. Предметом исследований в этой области являются, например, система регуляции генов, метаболизм, а также клеточная динамика и взаимодействия в клеточной популяции.

Основным инструментом в системной биологии является моделирование, которое используется как для анализа и интегрирования экспериментальных данных, так и для предсказаний поведения системы в условиях, отличных от экспериментальных.

Из-за сложности объекта изучения, большого количества параметров, переменных и уравнений, описывающих биологическую систему, современнаясистемная биология невозможна без использования компьютерных технологий.

Компьютеры используются для решения систем нелинейных уравнений, изучения устойчивости и чувствительности системы, определения неизвестных параметров уравнений по экспериментальным данным.

Многие методы и подходы теоретической системной биологии могут напрямую использоваться для практических задач фармакологии и биоиндустрии.

В частности, если необходимо количественно описать и предсказать поведениесложной метаболической или клеточной системы, либо оптимизировать ее функционирование, системно-биологическая модель становится единственной альтернативой затратному случайному перебору с использованием сложных экспериментальных методик.

преподаваниядисциплины специализаций «Введение Целью В системную биологию» является начальное знакомство студентов c современными направлениями исследований в биологии, использующими методы математического моделирования и биоинформатики, формирование представлений о биологических процессах и явлениях как о взаимосвязанной теоретических и вычислительных исследования методах различного биологических систем рода, некоторыми знакомство примерами моделей классическими математических биологическихпроцессов, отражающих особенности характерные биологических процессов демонстрирующих эффективность И

использования математических моделей дляпонимания механизмов функционирования биологических систем.

Преподавание дисциплины в значительной мере базируется на использовании современной компьютерной техники и программного обеспечения.

Задачи изучения учебной дисциплины:

- формирование у обучающихся целостного представления о системном подходе в биологии, его содержании, возможностях и методах использования;
- знакомство с основными типами биологических систем, их характеристиками, особенностями данных о биосистемах;
- знакомство с моделированием в биологии, видами моделирования, его возможностями;
- знакомство с рядом различных и наиболее часто используемых приемов моделирования сложных биологических систем;
- знакомство с классическими моделями в биологии и демонстрация значения математического и компьютерного моделирования для понимания природы биологических процессов и функционирования биологических систем;
- представление о способах обработки и использования больших массивов биологической информации и предназначенных для этого программных средствах;
- развитие навыков эффективного использования методов системной биологии, построения моделей биологических систем для анализа данных биологических и экологических исследований, получения биологически значимой информации;
- формирование мотивации к самостоятельным исследованиям в области системной биологии.

Полученные в результате прохождения дисциплины знания и навыки необходимы студентам для успешного выполнения учебной научно-исследовательской работы, прохождения учебной и производственных практик по специальности и

специализации, а также освоения курсов специализации.

результате прохождения дисциплины обучаемый должен:

знать:

- основные принципы системного подхода в биологии, типы биологических систем, их характеристики;
 - особенности биологической информации, виды и способы ее анализа;
- принципы построения моделей биологических систем, типы моделей, их особенности;
- основные виды математических моделей, способы их построения и исследования;

специфику получения биологической информации из больших массивов данных, существующие для этого средства;

уметь:

- проводить первичное редактирование и анализ биологических данных;
 - использовать простейшие описательные регрессионные модели;
- использовать известные кинетические модели биологических процессов;
- составлять на основе соответствующего математического аппарата простые кинетические модели;

владеть:

- научной терминологией данного раздела науки;
- устойчивыми навыками рационального использования методов первичного анализа биологической информации;
- базовыми навыками и умениями применения адекватного математического аппарата для построения моделей биологических систем.

Требования к академическим компетенциям специалиста

Специалист должен:

- освоить дисциплину «Математический анализ»;
- -освоить дисциплину «Теория вероятностей и математическая статистика»;
- уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
 - владеть системным и сравнительным анализом;
 - владеть исследовательскими навыками;
 - уметь работать самостоятельно;
 - быть способным вырабатывать новые идеи (обладать креативностью);
 - владеть междисциплинарным подходом при решении проблем;
- иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.

Требования к социально-личностным компетенциям специалиста

Специалист должен:

- быть способным к критике и самокритике (критическое мышление);
- уметь работать в команде.

Требования к профессиональным компетенциям специалиста

Специалист должен быть способен:

- взаимодействовать со специалистами смежных профилей;
- владеть современными средствами телекоммуникаций.

В соответствии с учебным планом 1-31 03 04 Информатика для студентов дневной формы получения образования учебная программа предусматривает для изучения дисциплины 148 учебных часов, в том числе 68 аудиторных часов: лекции — 34 часа, лабораторные занятия — 30 часов, управляемая самостоятельная работа — 4 часа. Форма текущей аттестации студентов в рамках данной дисциплины — зачет на третьем курсе в 5-ом семестре.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел І.Предмет системной биологии – биологические системы

Тема 1.1 Введение

Понятие «системная биология», различные его трактовки и содержание, место среди других приложений к биологии математики, информационных технологий и компьютерной техники. Биоинформатика, компьютерная геномика, компьютерная биология, математическая биология.

Системная биология. История, этапы развития системной биологии. Моделирование систем — основной подход системной биологии. Анализ сложных систем с большими массивами данных.

Основа системной биологии — математика: применение математических подходов и методов в биологии. Скалярные и векторные величины, матрицы.

Алгебраические уравнения и их системы, обыкновенные дифференциальные уравнения, их системы, уравнения с частными производными.

Тема 1.2 Определение системы, классификация систем: линейныенелинейные, живые-неживые. Системный подход в биологии, биологические системы.

Определение системы, классификация систем: линейные-нелинейные, живые-неживые. Системный подход в биологии, биологические системы, их особенности, корпускулярные и жесткие системы, уровни организации.

Тема 1.3 Изучение систем. Параметры систем.

Изучение систем. Параметры систем. Примеры и характеристики параметров биосистем (живых и неживых), получаемых при изучении систем. Изменчивость параметров — неотъемлемое свойство живых систем. Особенности экспериментальных данных в биологии. Необходимость статистической обработки данных, полученных для живых систем, начиная с уровня клетки. Примеры: рентген-структурный анализ, конформационные расчеты структуры молекул, метод молекулярной динамики. Примеры анализа биологической информации и применения компьютерной техники в биологии (Программный пакет BLAST, 3D-печать - биопринтинг).

Раздел II. Моделирование – основной метод изучения биологических систем

Тема 2.1 Методы изучения биологических систем. Первичный анализ и обработка данных.

Методы изучения биологических систем. Основной метод – построение моделей. Первичный анализ и обработка данных – статистика: базовые понятияи методы обработки экспериментальных данных. Первичный анализ и обработка данных с применением методов статистики: базовые понятия и операции обработки экспериментальных данных. Распределения. Оценка сильно отклоняющихся вариант. Средняя арифметическая, ошибка средней величины, достоверность – критерий Стьюдента. Мера варьирования величины – дисперсия, коэффициент вариации. Оценка репрезентативности выборки. Виды анализа: дисперсионный, корреляционный, регрессионный, кластерный анализ. Примеры работы с биологическими данными.

Тема 2.2 Модели в биологии.

Модели в биологии. Моделирование вообще и биологических систем в частности. Исторически первые модели в биологии. Возможности моделей. Виды моделей. Имитационные и математические модели. Примеры. Простейший математический аппарат, используемый построения ДЛЯ функции, линеаризация, моделей (математические регрессия, глобальный минимум). Физические наименьших квадратов, Примеры: аквариум, водная культура наземных растений, выделенные бислойная липидная мембрана, популяция хлоропласты, дрозофилы. Абстрактные модели. Имитационные и математические модели.

Имитирование поведения системы — важность для практических целей. Основные этапы построения имитационной модели. Примеры имитационных моделей: систем организма (почек и т.д.), продукционного процесса растений, водных экосистем, глобальной динамики.

Математическое моделирование позволяет установить законы функционирования биосистем. Этапы математического моделирования.

Раздел III Базовые модели в биологии

Тема 3.1 Принципы построения математических моделей. Базовые модели в биологии.

Принципы построения математических моделей. Базовые модели.

Примеры. Популяционная модель (экспоненциальная — неограниченный рост численности популяции, логистическая — ограниченный рост). Уравнения неограниченного и ограниченного роста. Критические уровни численности.

Дискретная модель популяции с неперекрывающимися поколениями. Колебания численности популяции.

Тема 3.2 Примеры базовых моделей.

Кинетика ферментативных реакций. Основные положения модели. Уравнение Михаэлиса-Ментен для наиболее простой реакции. Математическое представление модели, варианты линеаризации. Использование модели для анализа реакции. Ингибирование. Модель Моно. Применение системно- фармакологического моделирования в процессе разработки новых лекарственных препаратов. Устойчивые и неустойчивые состояния системы. Анализ уравнения системы на устойчивость методом Ляпунова. Верификация и валидация моделей.

Раздел IV. Примеры моделирования сложных биологических систем

Тема 4.1 Модель возбудимой мембраны Ходжкина-Хаксли.

Модель возбудимой мембраны Ходжкина-Хаксли.

Тема 4.2 Мембранный потенциал, его возникновение, количественное описание уравнением Гольдмана-Ходжкина-Каца.

Мембранный потенциал, его возникновение, количественное описание уравнением Гольдмана-Ходжкина-Каца. Проницаемость и проводимость мембраны. Ионные каналы.

Тема 4.3 Проницаемость и проводимость мембраны. Ионные каналы.

Потенциал действия, изменения ионной проводимости. Калиевая и натриевая проводимости, уравнения для их изменения. Свойства модели: порог возбуждения, рефрактерность, периодичность генерации потенциалов действия.

Мембранная модель накопления катионов в растительной клетке. Система механизмов ионного транспорта на плазматической мембране: избирательные и неизбирательные ионные каналы, электрогенный ионный насос. Функциональная эквивалентная схема системы. Локальная неоднородность мембраны, ее учет в модели. Верификация модели.

Тема 4.4 Модели роста популяций: неограниченный рост, модель Ферхюльста (логистический рост).

Анализ стационарных состояний. Модель ограниченного роста популяции при различном уровне начальной численности

Тема 4.5 Биоинформатические ресурсы.

Молекулярная механика	SPECTTOPE
Жесткая лиганд/мишень	LUDI
Молекулярная механика	Hammerhead
Частично деформируемый лиганд	DOCK
Жесткая мишень	DOCK

Молекулярная механика	ICM
Молекулярная механика	AMBER, CHARMM
Квантомеханический активный сайт	Gaussian, Q-Chem

Тема 4.6 Системы молекулярной визуализации.

Пакеты программ Chimera и PubChem.

Тема 4.7 Системы молекулярного моделирования.

- 1. AutoDock (http://autodock.scripps.edu)
- 2. Dock (http://dock.compbio.ucsf.edu)

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

MbI	Название раздела, темы	Количество аудиторных часов			асов				
Номер раздела, темы			Лекции	Практически е занятия	Семинарские занятия	Лабораторн ые занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2		3	4	5	6	7	8	9
I	Предмет системной биологии – биологические системы								
1.1	Введение Понятие «системная биология», различные его трактовки и содержание, место среди других приложений к биологии математики, информационных технологий и компьютерной техники.	2							Устный опрос
1.2	Определение системы, классификация систем. Системный подход в биологии, биологические системы.	2							Устный опрос
1.3	Изучение систем. Параметры систем.	2							Устный опрос
II	Моделирование – основной метод изучения биологических систем								
2.1	Методы изучения биологических систем. Первичный анализ и обработка данных.	2				4			Отчет о лабораторной работе
2.2	Модели в биологии.	2				4			Отчет о лабораторной работе
III	Базовые модели в биологии								
3.1	Принципы построения математических моделей. Базовые модели в биологии.	2				4			Отчет о лабораторной работе
3.2	Примеры базовых моделей.	2				4			Отчет о лабораторной работе
IV	Примеры моделирования сложных биологических систем								
4.1	Модель возбудимой мембраны Ходжкина-Хаксли.	2							Устный опрос
4.2	Мембранный потенциал, его возникновение, количественное описание уравнением Гольдмана-Ходжкина-Каца	4							Устный опрос

(fbI	Название раздела, темы	Количество аудиторных часов					часов	
Номер раздела, темы		Лекции	Практически е занятия	Семинарские занятия	Лабораторн ые занятия	Иное	Количество ч УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
4.3	Проницаемость и проводимость мембраны. Ионные каналы. Потенциал действия, изменения ионной проводимости. Калиевая и натриевая проводимости, уравнения для их изменения. Свойства модели: порог возбуждения, рефрактерность, периодичность генерации потенциалов действия.	4						Устный опрос
4.4	Модели роста популяций: неограниченный рост, модель Ферхюльста (логистический рост). Анализ стационарных состояний. Модель ограниченного роста популяции при различном уровне начальной численности	4						Устный опрос
4.5	Биоинформатические ресурсы	2			4		2	Отчет о лабораторн ой работе
4.6	Системы молекулярной визуализации	2			4			Отчет о лабораторн ой работе
4.7	Системы молекулярного моделирования	2			6		2	Отчет о лабораторн ой работе
	Всего	34			30		4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Рекомендуемаялитература

Основная

- 1. Ризниченко Г. Ю. Лекции по математическим моделям в биологии. Часть 1. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. 232 с.
- 2. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математические модели в биофизике. Введение в теоретическую биофизику. 2-е изд. Доп. Москва-Ижевск: Институт компьютерных исследований, 2004. 472 с.
 - 3. Рубин А.Б. Биофизика. Том. 1-2. М.:, 1987.
- 4. Рубин А.Б., Пытьева Н.Ф., Ризниченко Г.Ю. Кинетика биологических процессов. Учебное пособие. Изд-во МГУ, 1977. 330 с.

Дополнительная

- 1. Бэгшоу К. Мышечное сокращение. М.: Мир. 1985.
- 2. Вольтерра В. Математическая теория борьбы за существование. М., 1976.
- 3. Дещеревский В.И. Математические модели мышечного сокращения. М: Наука, 1977. – 160 с.
- 4. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическая биофизика. М., Наука, 1984, 304 с.
- 5. Рубин А.Б. Биофизика клеточных процессов. М.: Высш. школ., 1987. 303 с.
- 6. Computational Cell Biology / editors C. Fall et al. Springer-Verlag, New YorkInc. -2002-469 p.
- 7. Keener J., Sneyd J. 1998. Mathematical Physiology. New York: Springer. 766 p.
- 8. Murray J.D. 2001. Mathematical Biology. I. An Introduction. / J.D. Murray. 3ndedition. Springer. P. 551.

Электронные ресурсы

- 1. Информационная система "Динамические модели в биологии" / Московский государственный университет им. М.В.Ломоносова, биологический факультет, кафедра биофизики. http://www.dmb.biophys.msu.ru/
- 2. Ризниченко Г.Ю. Математическое моделирование в биологии. Биологияматематическая Популяционная динамика Экология математическая. http://www.library.biophys.msu.ru/MathMod/

Рекомендации по контролю качества усвоения знаний

На лекционных занятиях по учебной дисциплине «Введение в системную биологию» рекомендуется использование элементов проблемного обучения: проблемное изложение некоторых аспектов, использование частично-поискового метода.

Перечни используемых средств диагностики результатов учебной деятельности

Для аттестации обучающихся на соответствие их персональных достижений конечным требованиям образовательной поэтапным И программы создаются фонды оценочных средств, включающие типовые задания, контрольные работы И тесты. Оценочными средствами оценка способности обучающихся к творческой предусматривается деятельности, их готовность вести поиск решения новых задач, связанных с недостаточностью конкретных специальных знаний отсутствием общепринятых алгоритмов.

Для диагностики компетенций в рамках учебной дисциплины рекомендуется использовать следующие формы:

- 1. Устная форма: опросы, устная защита лабораторных работ.
- 2. Письменная форма: отчеты по лабораторным работам, оценивание на основе модульно-рейтинговой системы, коллоквиум, контрольная работа.

Примерный перечень тем для коллоквиума

- 1. Модель возбудимой мембраны Ходжкина-Хаксли.
- 2. Потенциал действия, изменения ионной проводимости. Калиевая и натриевая проводимости, уравнения для их изменения.
- 3. Модели роста популяций.

Примерный перечень тем контрольных работ

- 1. Методы изучения биологических систем.
- 2. Базовые модели в биологии.

Итоговая оценка формируется на основе 3-х документов

- 1. Правила проведения аттестации (постановление Министерства образования №53 от 29.05.2012г.).
- 2. Положение о рейтинговой системе БГУ.
- 3. Критерии оценки студентов.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название учебной	Название	Предложения об	Решение,
дисциплины, с	кафедры	изменениях в	принятое
которой требуется		содержании	кафедрой,
согласование		учебной	разработавшей
		программы	учебную
		учреждения	программу (с
		высшего	указанием
		образования по	даты и номера
		учебной	протокола)
		дисциплине	
Введение в	Биомедицинской		№ 1от 24
биоинформатику	информатики	Нет	апреля 2017 г

дополнения и изменения к учебной программе

на 2017/2018 учебный год

$N_{\underline{\circ}}N_{\underline{\circ}}$	Дополнения и	Основание				
Пп	изменения					
Учебная программа пересмотрена и одобрена на заседании кафедры биомедицинской информатики (протокол № 1 от 24.04 2017)						
Заведующий кафедрой профессор						
(ученая степень, звание) (подпись) А.В.Тузиков						
УТВЕРЖДАЮ						

(подпись) П.А. Мандрик

Декан факультета

(ученая степень, звание)