$$\frac{dy}{dt} = \varepsilon \left(\frac{1}{t}\sin\sqrt{t} + \frac{1}{2\sqrt{t}}\cos\sqrt{t}\ln t\right)y + f(t), \quad t \ge 1,$$
(12)

не имеет ограниченных на [1,+∞) решений.

Покажем это. Уравнение (12) удовлетворяет условиям теоремы при достаточно малой положительной постоянной в.

Рассмотрим уравнение

$$\frac{dy}{dt} = \varepsilon \left(\frac{1}{t} \sin \sqrt{t} + \frac{1}{2\sqrt{t}} \cos \sqrt{t} \ln t\right) y, \quad t \ge 1.$$
 (13)

Матрица Коши уравнения (13) имеет вид $y(t,\tau)=\exp\{\varepsilon(\sin\sqrt{t}\ln t)\}$ $-\sin\sqrt{\tau}\ln\tau$) }. Поэтому, полагая

1)
$$t_k = (\pi/2 + 2\pi k)^2$$
, $\tau_k = (2\pi k)^2$: $1 \le \tau_k \le t_k$, $\forall k \in N$;

2)
$$t_k = (2\pi k)^2$$
, $\tau_k = (3\pi/2 + 2\pi k)^2$: $1 \le t_k \le \tau_k$, $\forall k \in N$, получаем, что $\| y(t_k, \tau_k) \| \to +\infty$ при $k \to +\infty$.

Следовательно, уравнение (13) не обладает обыкновенной дихотомией на [1,+∞).

Тогда из теоремы Коппеля [3, с. 131] следует, что существует функция $f \in L_1[1,+\infty)$ такая, что уравнение (12) не имеет ограниченных на $[1,+\infty)$ решений, ибо в противном случае уравнение (13) обладало бы обыкновенной дихотомией на $[1,+\infty)$.

- Conti R. // Funkcialaj Ekvacioj. 1966. Vol. 9. № 1. P. 23.
- 2. Coppel W. A. Dichotomies in stability theory. New York, 1978.
- 3. Coppel W. A. Stability and asymptotic behavior of differential equations. Boston,
- 4. Прохорова Р. А., Изобов Н. А. // Вестн. Белорус. ун-та. Сер. 1. 1989. № 2. С.

Поступила в редакцию 13.05.99

УДК 517.926

В.И. БУЛАТОВ

ІЕННОЙ ФУНДАМЕНТАЛЬНОЙ МАТРИЦЕ ЛИНЕЙНОЙ РЕГУЛЯРНОЙ СИСТЕМЫ

The criterion for existence of the solutions of linear, regular, homogeneous differential systems is proved. Analytic representation of these solutions is obtained with a use of generalized fundamental matrix of the systems as well.

Рассмотрим стационарную систему

$$A_0 \dot{x}(t) = A x(t) , \qquad (1)$$

не разрешенную относительно производной. Здесь x - n-вектор: A_0 и A – вещественные $n \times n$ -матрицы.

Под решением системы (1), соответствующим начальному условию $x(0)=x_0$

где x_0 — заданный n-вектор, будем подразумевать дифференцируемую n-вектор-функцию x(t), $t \in [0; +\infty[$, удовлетворяющую (1), (2).

Систему (1) считаем регулярной, если найдется такое число λ_0 , что

$$\det(\lambda_0 A_0 - A) \neq 0. \tag{3}$$

Известно [1, с. 328-331], что если регулярная система (1) имеет решение x(t), соответствующее начальному условию (2), то это решение единственно.

Целью данной работы является получение эффективно проверяемых условий существования решений регулярных систем (1), (2) и обоснование соответствующих аналитических представлений этих решений через конструктивно определяемую обобщенную фундаментальную матрицу рассматриваемых систем.

В дальнейшем нам понадобится следующая

Лемма. При выполнении условия (3) для t>0 определена функция

$$F(t) = \lim_{\epsilon \to +0} \exp((A_0 - \epsilon A)^{-1} At) , \qquad (4)$$

 $F(t)=\lim_{\varepsilon\to +0}\exp((A_0-\varepsilon A)^{-1}At)\;,$ являющаяся квазиполиномом от t и удовлетворяющая системе

$$A_0 \dot{F}(t) = AF(t), \quad t > 0.$$

Доказательство. Из теории [1, с. 320-322] приведения регулярных пучков матриц к каноническому блочно-диагональному виду следует, что при выполнении (3) найдутся такие невырожденные $n \times n$ -матрицы P и Q, что

$$\begin{cases}
PA_0Q = \begin{bmatrix} H & 0 \\ 0 & E_{n-m} \end{bmatrix}, \\
PAQ = \begin{bmatrix} E_m & 0 \\ 0 & S \end{bmatrix},
\end{cases} (5)$$

где H — некоторая нильпотентная $m \times m$ -матрица, S — соответствующая $(n-m)\times (n-m)$ -матрица, E_{n-m} и E_m означают единичные матрицы порядков (n-m) $\bowtie m$.

На основании (5) в силу (3) для всех достаточно малых ε≠0 получаем

$$(A_0 - \varepsilon A)^{-1} A = Q \begin{bmatrix} (H - \varepsilon E_m)^{-1} & 0 \\ 0 & (E_{n-m} - \varepsilon S)^{-1} S \end{bmatrix} Q^{-1}.$$

Значит [1].

$$\exp((A_0 - \varepsilon A)^{-1} A t) = \mathcal{Q} \begin{bmatrix} \exp((H - \varepsilon E_m)^{-1} t) & 0 \\ 0 & \exp((E_{n-m} - \varepsilon S)^{-1} S t) \end{bmatrix} \mathcal{Q}^{-1}.$$
 (6)

Очевидно, что

$$\exists \lim_{\varepsilon \to 0} \exp((E_{n-m} - \varepsilon S)^{-1} St) = \exp(St). \tag{7}$$

Далее из равенства $(H - \varepsilon E_m)^{-1} = \frac{H(H - \varepsilon E_m)^{-1} - E_m}{\varepsilon}$ следует, что

$$\exp((H - \varepsilon E_m)^{-1}t) = R_{\varepsilon}(t)\exp(-\frac{t}{\varepsilon}),$$

где в силу нильпотентности матрицы H имеем [1]

$$R_{\varepsilon}(t) = \exp\left(\frac{H(H - \varepsilon E_m)^{-1}}{\varepsilon}t\right) = \sum_{k=0}^{m-1} \frac{H^k (H - \varepsilon E_m)^{-k}}{k! \varepsilon^k} t^k.$$

Отсюда, учитывая, что при каждом фиксированном t элементами $R_{\epsilon}(t)$ являются рациональные функции от є и что при возрастании аргумента экспоненциальная функция растет быстрее любой рациональной, для 1>0 непосредственно получаем, что

$$\exists \lim_{\varepsilon \to +0} \exp((H - \varepsilon E_m)^{-1} t) = \lim_{\varepsilon \to +0} \frac{R_{\varepsilon}(t)}{\exp(\frac{t}{\varepsilon})} = 0.$$
 (8)

Из (6)-(8) для t>0 следует, что

$$\exists F(t) = \lim_{\varepsilon \to +0} \exp((A_0 - \varepsilon A)^{-1} A t) = Q \begin{bmatrix} 0 & 0 \\ 0 & \exp(S t) \end{bmatrix} Q^{-1}.$$
 (9)

Из (9), во-первых, получаем, что элементами F(t) являются квазиполиномы от t, и, во-вторых, в силу (5) для t>0 имеем [1]:

$$\begin{split} A_0 \dot{F}(t) = & \left(P^{-1} \begin{bmatrix} H & 0 \\ 0 & E_{n-m} \end{bmatrix} Q^{-1} \right) \left(Q \begin{bmatrix} 0 & 0 \\ 0 & S \exp(St) \end{bmatrix} Q^{-1} \right) = P^{-1} \begin{bmatrix} 0 & 0 \\ 0 & S \exp(St) \end{bmatrix} Q^{-1} = \\ = & \left(P^{-1} \begin{bmatrix} E_m & 0 \\ 0 & S \end{bmatrix} Q^{-1} \right) \left(Q \begin{bmatrix} 0 & 0 \\ 0 & \exp(St) \end{bmatrix} Q^{-1} \right) = AF(t). \end{split}$$

Замечание. Аналогично показывается, что при выполнении (3) для t<0 определена функция

$$G(t) = \lim_{\varepsilon \to -0} \exp((A_0 - \varepsilon A)^{-1} A t) = Q \begin{bmatrix} 0 & 0 \\ 0 & \exp(St) \end{bmatrix} Q^{-1},$$

являющаяся тем же самым квазиполиномом от t, что и (9), и, значит, также удовлетворяющая системе

$$A_0 \dot{G}(t) = AG(t), t < 0.$$

Из полученных результатов следует, что функция

$$\Phi(t) = \begin{cases} F(t), \text{ для } t > 0 \\ G(t), \text{ для } t < 0 \end{cases}$$

доопределенная в нуле по непрерывности равенством $\Phi(0)=F(+0)=G(-0)$, будет тоже являться квазиполиномом (9) от t, удовлетворяющим системе

$$A_0\dot{\Phi}(t) = A\Phi(t), \ t \in R. \tag{10}$$

Нетрудно видеть, что для обыкновенной системы (1), т. е. у которой $\det A_0 \neq 0$, во-первых, условие (3) выполнено, и, во-вторых, функция $\Phi(t)$ имеет вид

$$\Phi(t) = \exp(A_0^{-1}At),$$

т. е. в этом случае она совпадает с фундаментальной матрицей [2] рассматриваемой системы. Поэтому и в общем случае выполнения условия (3) целесообразно называть $\Phi(t)$ обобщенной фундаментальной матрицей соответствующей регулярной системы (1). Это согласовывается также со следующими свойствами введенной функции $\Phi(t)$ регулярной системы (1), аналогичными хорошо известными свойствами фундаментальной матрицы линейных обыкновенных систем вида (1).

Теорема. Регулярная система (1) тогда и только тогда имеет решение x(t), соответствующее начальному условию (2), когда

$$\Phi(0)x_0=x_0,$$
 (11)

при этом

$$x(t) = \Phi(t)x_0, \tag{12}$$

где $\Phi(t)$ – обобщенная фундаментальная матрица рассматриваемой системы

Доказательство. Из [3] следует, что для того, чтобы регулярная система (1) имела решение x(t), соответствующее начальному условию (2), необходимо и достаточно, чтобы

$$x_0 = ((A - \lambda_0 A_0)^{-1} A_0)^n y_0,$$

где y_0 – некоторый n-вектор. Поэтому в случае разрешимости регулярной системы (1), (2) в силу (5) имеем [1]

$$x_0 = Q((PAQ - \lambda_0 PA_0 Q)^{-1} PA_0 Q)^n Q^{-1} y_0 =$$

$$= Q \begin{bmatrix} (E_m - \lambda_0 H)^{-1} & 0 & \\ 0 & (S - \lambda_0 E_{n-m})^{-1} \end{bmatrix} \begin{bmatrix} H & 0 \\ 0 & E_{n-m} \end{bmatrix}^n Q^{-1} y_0 =$$

$$= Q \begin{bmatrix} (E_m - \lambda_0 H)^{-n} H^n & 0 \\ 0 & (S - \lambda_0 E_{n-m})^{-n} \end{bmatrix} Q^{-1} y_0.$$
 Учитывая, что из нильпотентности матрицы H следует $H^n = 0$, оконча-

тельно получим

$$x_0 = Q \begin{bmatrix} 0 & 0 \\ 0 & (S - \lambda_0 E_{n-m})^{-n} \end{bmatrix} Q^{-1} y_0.$$

Отсюда на основании (9) и определения обобщенной фундаментальной матрицы $\Phi(t)$ регулярной системы (1) имеем

$$\begin{split} \Phi(0)x_0 &= F(+0)x_0 = \left(\mathcal{Q}\begin{bmatrix} 0 & 0 \\ 0 & E_{n-m} \end{bmatrix} \mathcal{Q}^{-1} \right) \mathcal{Q}\begin{bmatrix} 0 & 0 \\ 0 & (S-\lambda_0 E_{n-m})^{-n} \end{bmatrix} \mathcal{Q}^{-1}y_0 = \\ &= \mathcal{Q}\begin{bmatrix} 0 & 0 \\ 0 & (S-\lambda_0 E_{n-m})^{-n} \end{bmatrix} \mathcal{Q}^{-1}y_0 = x_0, \end{split}$$

т. е. соотношение (11) выполнено

Далее при выполнении (11) для функции (12), во-первых, справедливо равенство (2), и, во-вторых, из (10) следует (1), т. е. формула (12) дает требуемое представление решения регулярной системы (1). (2).

Cледствие. Общее решение x(t) регулярной системы (1) имеет вид $x(t) = \Phi(t)X_0c$.

где с – соответствующий вектор произвольных постоянных, $\Phi(t)$ – обобщенная фундаментальная матрица рассматриваемой системы, а X_0 – фундаментальная матрица решений линейной алгебраической однородной системы относительно n-вектора x_0

$$(\Phi(0)-E_n)x_0=0.$$

1. Гантмахер Ф.Р. Теория матриц. М., 1988.

2. Богданов Ю.С., Мазаник С.А., Сыроид Ю.Б. Курс дифференциальных уравнений. Мн., 1996.

3. Bulatov V.I. // ORAN-ALGERIE. 1988. Fascicule № 1

Поступила в редакцию 20.10.99

УДК 622.831; 539.3

М.А. ЖУРАВКОВ, О.Б. ГРИЩЕНКОВА, М.А. КОВАЛЕВА

ИСПОЛЬЗОВАНИЕ ПОЛУОБРАТНОГО МЕТОДА СЕН-ВЕНАНА В ГЕОМЕХАНИКЕ

1. Теоретические основы и анализ систем разрешающих уравнений

There are described the theoretical bases of the solution of some classes of problems of applied geomechanics on the basis of use of the halfconverse Sen-Venan method main idea in the paper. Analysis of solution equations systems and influence of boundary conditions and accepted physical hypotheses on the final solutions is made.