Краткие сообщения

УДК 621.382.323-416

А.Д.АНДРЕЕВ, Ф.Ф.КОМАРОВ, В.Н.МИХЕЙ

АППРОКСИМАЦИЯ ЭМИССИОННОГО ТОКА ЭЛЕКТРОНОВ В ДИЭЛЕКТРИК ЗАТВОРА МОП–ПТ

Substrate ionization currents are measured, electron mean free path and energy are defined for MOSFETs with the substrate doping levels of 10^{22} , 10^{23} , 10^{24} m⁻³ in the temperature interval 173 ± 373 K. The temperature influence on the value of the electron emission currents ratio is examined. These currents were calculated for the length that equals to the abrupt drain-junction depletion width approximated by a segment with homogeneous field. It has been shown that the emission current ratio calculated by the method in which the actual drain-junction depletion width is replaced by the equivalent one having a uniform longitudinal field, could be accurate only for the high temperature range.

При расчете тока эмиссии в диэлектрик затвора МОП-транзистора применяется модель безударного перемещения электронов к границе кремния и диоксида кремния из объема подложки, расположенного около стокового перехода, с однородной концентрацией электронов и заданной их тепловой энергией в дрейфовом распределении Максвелла [1,2]. Эмитировать будут электроны, энергия которых равна или превышает высоту потенциального барьера границы раздела (~3,2 эВ [2]). Энергия образования пары электрондырка 1.1 эВ [3]. поэтому эмиссия сопровождается ударной ионизацией и умножением носителей заряда. Области эмиссии и ионизации примыкают к стоковому переходу и размеры их в первом приближении предполагаются одинаковыми. Интенсивная ионизация в проводящем канале начинается при напряжении на стоке, превышающем напряжение насыщения тока. В транзисторе с низкой концентрацией примесей в подложке напряжение ионизации превышает эффективное напряжение затвора: канал перекрывается и генерация пар электрон-дырка осуществляется на участке перекрытия электронами. инжектируемыми из инверсионного слоя истоковой части канала [4]. В высоколегированной подложке напряжение ионизации меньше эффективного напряжения затвора [2,3], канал не перекрывается и размер области ионизации и эмиссии может определяться градиентом канального потенциала около перехода стока.

В данной работе рассматривается влияние температуры на величину отношения токов эмиссии, рассчитанных на участке канала, равном ширине обедненной области резкого n^+ -*p*-перехода сток-подложка [5]

$$d = \sqrt{2\varepsilon (V_d - V_{ds})/eN} \tag{1}$$

и при аппроксимации размера d отрезком ΔL с однородным полем E_m [3,4]

$$\Delta L = (v_{\cdot} - v_{\cdot})/F_{m} = \frac{1}{2} \frac{F(v_{\cdot} - V_{ds})}{eN}, \qquad (2)$$

где ε – диэлектрическая постоянная кремния, V_0, V – соответственно встроенный потенциал и падение напряжения на переходе стока, N – концентра-72

ция примесных атомов в подложке. V_{d} , V_{ds} – напряжение на стоке и напряжение насыщения тока соответственно, $V = (V_0/2)((1+4V_d/V_0)^{1/2}-1)$, $V_0 = (kT/e) \times \frac{1}{n}(N_A N_D/n_i^{-1})$ [5]. Отношение $\Delta L/a = ((V_d - V_{ds})/(V_0 + V))^{1/2}$ и при T = 300 К в интервале $N = 10^{-2} \div 10^{-2}$ м⁻² соответственно 0,8÷1,2 (рис.1).

1,2 1,0 0,8 0,6 2 4 6 8 10 V_a.В Рис. 1. Зависимость отношения Δ*I*/d от напряжения на стоке: *I*-3 соответствуют *N*=10²², 10²³, 10²⁴м³ Эмиссионный ток рассчитывался по формуле [2]

$$I_{a} = \frac{W\Delta L\lambda}{x_{a}^{2}} Q_{n} v \exp(-\varphi_{b} / e\lambda E_{m}), \qquad (3)$$

где W — ширина проводящего канала, ΔL размер области стока по длине канала, из которой электроны эмитируют в диэлектрик, x_j — глубина перехода стока, λ — средняя длина свободного пробега электронов, $Q_n = C_0(V_g - V_T - V_d)$ — поверхностная плотность электронов в инверсионном слое, C_0 удельная емкость окисла, V_g , V_d , V_T — напряжения затвора, стока и пороговое соот-

ветственно. E_m – напряженность электрического поля на участке ΔI , $v = (e\lambda E_m/2\pi m)$ – "тепловая" скорость электронов, e – модуль заряда электрона. m – эффективная масса электрона, φ_b – высота потенциального барьера на границе диэлектрик-полупроводник. Уравнение (3) применимо при условии $x_j > \lambda$ [2]. Электроны, эмитируемые из околостоковой области проводящего канала в окисел, находятся в квазитермодинамическом равновесии. и в (3) $\exp(-\varphi_b/e\lambda E_m)$ можег быть заменена на $\exp(-\varphi_b/kT_e)$ [6]: $kT_e \approx e\lambda E_m$ [7]. В процессе разогрева электронов их температура T_e может заметно превышать температуру решетки T и $e\lambda E_m \approx kT_e(2\delta(1-T/T_e))^{u_2}$ [8], δ – доля передаваемой энергии при одном соударении электрона. При $T/T_e=0,1$, энергии оптического фонона 0,07эВ, тепловой энергии электронов 0,35эВ, $\delta=0,2$ и значение корня квадратного равно 0,6.

Для расчета тока по формуле (3) были измерены токи подложки и стока, напряжения V_{d} , V_{ds} . Для измерений характеристик транзистора применялись транзисторы, изготовленные по стандартной технологии интегральных микросхем на кремниевой подложке *p*-типа с концентрацией примесей 10^{22} , 10^{43} , 10^{-4} м³ и толщиной окисла под затвором 0,1; 0,2; 0,3 мкм соответственно: n^{+} – области истока и стока с уровнем легирования ~ 10^{26} м² и глубиной 0.8 мкм: длина и ширина канала 4 и 20мкм соответственно: металлический электрод затвора из алюминия.

Входяшее в (3) поле E_m определялось также в пределах принятой аппроксимации величин d и ΔL . Для резкого n^+ -*p*-перехода E_m от границы стока уменьшается по глубине канала до значения E_0 на расстоянии d или ΔL , но $E_m >> E_0$ [2]. поэтому, перемешаясь на этом расстоянии, электроны приобретают энергию в среднем поле $(E_m + E_0)/2 \approx E_m/2$. Согласно [5], напряженность электрического поля в обедненной области перехода стока $E_m/2$ рассчитывается по формуле $E_{m1} = (eN(V_0 + V)/2\epsilon)^{1/2}$, на участке ΔL напряженность электрического поля E_{m2} . согласно [3], рассчитывается по формуле $E_{m2} = (V_d - V_{ds})/\Delta L = (eN(V_d - V_{ds})/2\epsilon)^{1/2}$. Подставляя в формулу (3) значения полей E_{m1}, E_{m2} , найдем отношение эмиссионных токов:

$$\frac{I_g(E_{m2})}{I_g(E_{m1})} \cong \left(\frac{V_d - V_{ds}}{V_0 + V_c}\right)^{3/4} \exp\left(\frac{0.6\gamma\phi_b}{e\lambda E_{m2}}\right),\tag{4}$$

где $\gamma = ((V_d - V_{ds})/(V_0 + V))^{1/2} - 1$. Значение λ определялось из соотношения, связывающего токи подложки и стока с коэффициентом умножения носителей

73

This document has been edited with **Infix PDF Editor** - free for non-commercial use. заряда [2]. При изменении температуры прибора градиенты dV_{ds}/dT , dV_0/dT имеют противоположные знаки [5], а также изменяется процент ионизированных примесных атомов [9] (рис.2).

Рис.2. Расчетная зависимость доли ионизированных примесных атомов бора N^+/N от уровня легирования подложки при различных темпера-

Рис.3. Зависимость отношения $\ln[I_g(E_{m2})/I_g(E_{m1})]$ от температуры: I-3 соответствуют $N=10^{22}$, 10^{23} , 10^{24} м⁻³

На рис.3 даны зависимости отношения $I_g(E_{m2})/I_g(E_{m1})$ от температуры, рассчитанные по формуле (4) с учетом того, что λ , N, V_{ds}, V_T являются функциями температуры. Как видно из рис.3, различие в величине токов заметно возрастает при охлаждении прибора. Это дает основание предполагать, что используемая замена ширины обедненной области стокового перехода эквивалентным отрезком с однородным полем не может применяться для расчета эмиссионного тока в области низких температур. У приборов, работаюших в режиме генерации электронно-дырочных пар без перекрытия канала, когда инверсионный слой существует по всей его длине, повидимому, нельзя не учитывать взаимодействие инверсионных электронов с той частью перехода стока, которая выходит на границу раздела полупроводник-диэлектрик при заданной глубине проводящего канала. Результаты исследования этого процесса будут представлены в последующей публикации.

1. Miura M., Schwerin W., Weber W. et al. // IEEE Proceed. 1987. Vol.134. Pt.1. No4. P.111.

2. Андреев А.Д., Борисович Д.Д., Комаров Ф.Ф. и др. // Весці АН Беларусі. Сер. фіз.-тэхн. навук. 1997. №3. С.58.

3. Андреев А.Д., Борздов В.М., Валиев А.А. // Там же. 1994. №3. С.81.

1. Das N.C., Khokle W.C., Mohanti S. // Int. J. Electron. 1986. Vol.60. Not. P.495.

5. Андреев А.Д., Бельский А.М., Валиев А.А.// Вестн. Белорус. унта. Сер.1. 1997. №1. С.26.

6. Hu C., Tam S., Hsu F. et al. // J. Solid State Circ. 1985. Vol.20. No1. P.295.

7. Saito K., Yoshii A. // Jap. J. Appl. Phys. 1988. Vol.27. №12. P.2398.

8. Елинсон М.И. и др. // Ненакаливаемые катоды М., 1974. С.48.

9. Sheng S. Li // Solid-State Electron. 1978. Vol.21. P.1109.

Поступила в редакцию 15.04.99.

74