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An estimation problem of correspondence matrix for a network is considered. It is
supposed that intensity of output flow for each node is fixed, but intensities of flow between
nodes are unknown. It is necessary to estimate them. As a criterion of the estimation
efficiency, the weighted sum of residual squares is used. Practical example is considered.
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1. INTRODUCTION

We have n corresponding points {towns) with numbers i == 1,2, ..., n. For the point i,
one is known a number /; of inhabitants {citizen) and m numerical characteristics (categor-
ical data) ¢; s,/ = 1,2, ..., m, those are known constants. For all pairs of the points (i, /) the
distance d;; between thcm is kown as well. Additionally, we known the size of passenger
departure ¥; from point i during considered time interval, that is a random variable. Our
aim is to estimate correspondence size Y;, for all pairs of points (i, ), precisely the size
of passenger departure from the point i to the point /. The matrix of ¥;; is to be said the
correspondence matrix. Let us denote an estimate of ¥;; by Y% It is requests that all ¥}, are
positive ¥, > Gfori # L, ¥, =0and Y, = V. As cnterlon of the estimation efficiency

E I N4
we use thc welghted sum of residual squares [3]

R= Zw: Z , 1)

where w; is a weight for the point i.

Such problem was considered earlier in the literature. Besides, usually the entropy
approach is used at that. But there are many received estimates which are equal to the zero,
that is inaccessible.

We use the gravitation model and the regression theory. We suppose that the concrete
correspondence (i, {) for i # { is formed with respect to model
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where g, {a;} and {8;} are unknown regression coefficients,

7 and & are unknown form coefficients,

{V.:} are independent identically distributed random vanables wnth zero mean and unknown
variance o2 .

As a corollary of this model we get the following presentation for the size of the
passenger departure from the point i:

o ye m
Y, = Z Y= Z (fif) exp(a + E(a](ci,f +¢1y) + Bileijer)) + Vi) 3)
pay
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It is convenient to represent our models in a vector-matrix form. Let: ¢y = (it ... Cim)
and gin = (C1C11 - CimCim) bE m-vector-rows a = (o .0,
=B B .. ﬁm)T
Then * )
Yis = = exp(a + (c) + Cp)e + ganB + Vi),
(dis)
(hh)’
Y= Z Yi¥i = E @0 exp(a + (cu + e + gunB + V). 4
iel
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Now we must suggest an estimate Y. For that we need investigate the distribution and
the expectation of ¥,
Note that an alternative representation of our model (4) is the following:

Yy = exp(@In(ihy) — TIn(dy) + @ + (e + cw)e + ganB + Vi),

Y; = Z Yis = Zexp(e In(A:k) — Tin(dig) + a + (e + cp)a teu pB+Vi). (8

i=1 . i=1

2. DISTRIBUTION ANALYSIS

We suppose that V;; has normal distribution. Then Z;; = exp(Vi,)} has the log-normal
distribution [2] with characteristics

B = Eepi = e (T ). D) = DlexplVi) = exp(o?)explo?) - 1).

Therefore, for i # 1/

E(Y,) = (( d' 3)., expla + (¢ + cop)a + genB) exp (0;) : ®
D) = B exp(ata-+ e + oo+ 80 exploerple?) — ) =

= (exp(c?) — WEF, ). (D
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Analogous formulae have place for {¥;}:

e~ (di)™

it

n n hi 2]
E(Y) =) E(Yun= exp(-;-ﬂz > i) expla + (e +cp)a+ ginb),  (8)
1=1 -

o £

f=§
il

x exp(2(a + (¢ + co)a + guph)) = (exp(d®) — IE()Y. 9

With respect to the central limit theorem we suppose that ¥; has the normat distribution.
Then, optimal weights must be chose as

n 4120
i = (3 B exp2(a + (o + cwlo + €0B)
=t

These weights contain the unknown vector of the parameters 7, 6, a, « and 3. Therefore
we must use an iterative procedure and successively recalculate estimates of the weights
and the parameters.

3. ESTIMATION OF REGRESSION PARAMETERS

Our model also contains the following unknown parameters: a, {¢;}, {8}, T, 0, and 2.
If we use the expectations (8) for the estimation, then one can not identify both parameters
a and o? simultaneously. So, let us introduce the united parameter & = a + jo°. Now
instead of (6) and (8) we have the mode! for { # [

(h.: 1)

E(Yy) = @ exp(a + (¢ + oo + gy b)), (10)
E(Y)= ZE(YH) = Z {(a; 3), exp(@ + (cg) + cpy)e + gunh)- (11)
i:: J#I
Further as early,
D(Y.) = (exp(c®) - D(E(Y.)), . - (12)
D(Y,,) = (exp(c®) — INE(Y))*. 13)

We will use three procedures. The first procedure is the main one. It estimates-the
parameters &, « and S providing fixed values of the scalar parameters 7 and o. The second
procedure finds estimates of the parameters 7 and & using the simple mesh method. The
third procedure identifies a and ¢®. The main procedure supposes three steps. The zero
step is an initial one, the other steps are repeated. -
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The zero step We chose initial values of parameters &, «, S, 1,0 and calculate values of
the weights {w;}. Let W = diag(w, ..., w,) be a diagonal matrix with the values {w;} on
the main diagonal.

The first step Using a gradient method {1] to find an estimates of &, o and 3, which min-
imize the criterion (1) for fixed values 7, # and {w;}. We have the following expressions
for the gradient of the sum (1) with respect to the scalar parameter @ and vectors of the
parameters o and 3

(G)-(§)-

PR AR AV DI Q%lf expla + (¢ + c)ex + ginb)
= -2 TLiw( - ¥ TL, B expla + (o + coa + gunB)lew + )
S wlY - YL Q',??fﬂ exp(a + (e + code + gunBgl

Now we can apply a gradient method to minimize the objective function (1). Corresponding
values of the vectors give the estimates &*, &* and 8* for the current iteration.

The second step The weights {w;} are recalcuiated for new values 8%, o* and 8*. If a
difference between two last values of sum (1) is less then prescribed precision € > 0, then
the iterations are ended. In othér case, the transition on the first step is performed..

The described main procedure is repeated for all pairs of the values v and @ belonging
to mesh points. The best value of the objective function determines estimates 7*, 8, &°, o*
and 8*. The third procedure is described fusther.

4. AN ESTIMATION OF PARAMETERS o AND o?
According to (10) and (11) we have the estimates for i # [

.
EW)" = o exp(@ + (e + cnla” +gunf), (4

[: 9 .
E(Y) = ZE(Y:)* ):((a; ’)’,,, exp(@” + (e + cp)o” + guoBY).  (15)

Analogously from (12) and (13) we get
D(Y,,))" = (exp(c™) — INE(X.))")", (16)

D(%)* = (exple®) - D SE)P. Can

=
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At other hand we can estimate the variance of ¥; with respect to the variance definition
| DY) = E(Y; — E()Y:. |
Using E(Y;)* as the estimate £(Y;), we have an alternative estimate of D(Y;):

DYy = (Y, - E(Y)")%. - (18)

(Here we suppose a weak dependence between Y; and E(Y;)* because the last is calculated
on the base of many {¥;} ).

Now the variance parameter o can be estimated using the equallzatlon of both values
(17) and (18). By summing ones for i = 1, ..., n, we get

ZD(Y)* ZD(Y)** o (e () - S SEG = 30— EC

i=l . =] “' =l

Therefore

{1+ 222(50';) )" Z(Y E(r)* )2} (19)

i=1 {=j+2

0‘2'

Now the estimate of the parameter ¢ is calculated as a* = @" — 5-.

5. BALANCING

Often one requests that the statistical data {¥;} and the estimates {¥;3} should be bal-
anced:

Y vi=Y i=1..n 20)

For that we introduce the corrected coefficient §; > 0 for each point /. Then corrected
estimates are
){E‘gzﬁyfﬁ;, ii=1,. (21)
To calculate the coefficients {d;} we have nonlinear system
-1
Z '.16‘ i= ,...,n, 6 = (ZEJJ{) “ i= 1,...,”.
fe=t . : .

The experience shows that a solution is determined 31mply by the method of successive
approaches: for the k-th iteration :

-1
50 = (ZY 50 4 Z -}5?’"") Y, i=1,..n, (22)

I=i+1

where {5{"} are initial values and we keep in mind that ¥4 = 0. The iterations have
ended, when a difference between two last values of 6 = (6(”6‘” .88 is less then the
prescribed precision e > 0, '
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6. EXAMPLE

Our example concerns seven (n = 7) largest towns of Latvia: 1. Riga, 2. Daligavﬁils
3. Jelgava, 4. Jurmala, 5. Liepaja, 6. Rezekne, 7. Ventspils. The inhabitants (cmzen)
numbers (in then thousand peoples) are represented by vector A:

=(h hy ... hy)' = (766 11.6 6.4 56 9.0 3.9 4.4)".

As numerical characteristics (categorical data) of the i-th town, two indices have been
chosen: ¢;; - significance as a rail junction and ¢;o - significance as a scaport. The
corresponding numerical values are presented by 7 x 2 matrix:

cfl2ooo1o0)
“\1oo0o0s502)/"

The following symmetric matrix describes distances between towns (in ten km):

0 229 47 23 215 242 184 \
229 0 266 260 444 93 421
47 266 0 57 175 279 175
d=1] 23 260 57 0 201 273 166
215 444 175 200 0 457 119
242 93 279 273 457 O 434
\18.4 421 175 166 119 434 0O

Factual passenger departure (in billion pagsengers) in some year is the following:
_ Y= % ... ;)" =(15.0 246 0.16 8.40 4.87 0.37 1.45)".
The above described estimation procedure gives the following estimates for Va; = 1:
= 0706, 1487, ( i’ ) ; ( 052 ) (5)-(5),
\ g 0.69 / \A2/ 0168
Now we can calculate estimate (15):
=EY) =(EM)" .. E()") =(14.6 1.57 3.47 8.14 4.05 0.73 2.25)7.

It gives the value of the criteria (1) R = 1.917. Now we must estimate the parameters
a and o2, Firstly, the estimate ¢®* is calculated by formula (19). We get 02* = 0.158.
Secondly, using the estimate &* = ~1.42 we find

at=a* - = 02* =—142~ % 0.158 = —1.499.

Let us consider the balancmg procedure (23). As initial values of coefficients we take
the unit vector 6@ = (5% &% .. s = (1 1 .. 1). ARer 40 iterations we get values
640 = (1.664 1.224 0.030 0.679 0.983 0.354 0.524), and they are not change more.
Now the corrected estimates ¥;, = §; ;Y10 satisfy balance condition (20).

266



7. CONCLUSIONS

The problem of the estimation of correspondence size Y, ; for all pairs of network points
(i, 1) is considered. As initial data, the size of departure ¥; from point i during the considered
time interval is used. The nonlinear regression model for the concrete correspondence Y;;
has been suggested. The unknown model’s parameters have been estimated by the gradient
method. Numerical examples show that considered approach gets good results.
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