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1. INTRODUCTION

When we investigate contro] processes in different quening systems over conflict flows
modulated by a random environment we finally construct random sequences of the form
{(Ti, ke, xi)si = 0,1,...}. Such sequence describes in a discrete time scale {r;i =
0,1,...} server state change, queues length fluctuations and random environment state
change correspondingly. As a rule the vectors x;, { = 0, 1, ... take valucs from an integer
lattice of dimension higher than 1. Besides, the sequence can be periodic (as a peri-
odic Markov chain) if the server performs readjustments and during these doesn’t process
customers. We use iterative-magorant approach to obtain conditions for the stationary dis-
tribution existence. We also demonstrate that averaging of random environment influence
should be taken into consideration while applying this approach.

Consider a queueing system with m < oo servicing nodes, TV, '@, T and
one node for readjustments, '™+, There also m input flows of customers, 1}, Iy, ...,
I1,, one for each servicing node. Customers from each flow enter the appropriate buffer
of infinite capacity. A customer from the flow IT;, j = 1, m, is served at the node T'),
Input flows are conflict, i.e. a customer from no more that one flow can get service at
each time instant. Service duration for a customer from the jth queue has a distribution
function B;(f), B;(0+) = 0. A server readjustment is executed at the node T™*" after
each service. The readjustment duration after a service at the node I'? has a distribution
function B;(t), B;(+0) = (. If all buffers are empty at the end of an readjustment, then
the service of the first customer arrived begins. If not all the buffers are empty then the
following rule is run. Suppose there are x; customers in the jth buffer at the end of an
readjustment. Put x = {x),xs,...,%,), assume x # (0,0,...,0). Then the service starts
at the node I'? with j = A(x), where A(:) is a mapping of the non-negative integer lattice
X={0,1,..}"onto {1,2,...,m+1}. Here h(x) = j implies x; > 0. Only the zero vector
0=(0,0,...,0) € X is mapped to m + 1. The input flows and branching secondary flows
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are modulated by the random environment with the firite state set {efV,e®, ..., e}, The
environment may change its state only when a service or an adjustment has just terminated.
By a;; denote the probability to change environment state from e to e® & = 1,d.
Assuming environment state e on, customer groups arrive to the jth buffer according
i i (%) (. . )
to the Poisson law with parameter A\;”. By p," denote the probability of groups size

==
b at the jih flow, b = 1, 2, .... We shall assume that the series [ (2) = Y pj"2*
b=1

converges in a circle J2| < I + ¢ for some &€ > 0. This assumption holds in fact for a
variety of important group size models, such as bounded group sizes {1] and Bartlett-type
group sizes [2]. By {p}k)(y);y =y, 4,.. .. Um)r=0,1,...,r= m} denote the joint
distribution of newly born secondary customers when the environment is in the state e'®.
For y = (¥, 42, - - -, Ym) here p}” (1) is the probability of ) secondary customers arriving
into the first queue, y» secondary customers arriving into the second queue, etc., and finally
Ym Secondary customers arriving into the mth queue when the environment is in the state
e®,

The control of the queues in this system follows the time-sharing algorithm. The aim
of the study is to obtain stability conditions for the fluctuations of queues sizes.

2. MAIN RESULTS

The mathematical model of the queueing system was given in [3]. We recall notation
from the cited work. Assume a probability space (§2,F,P) where all random variables
and random elements are defined. Both types of time intervals are called working tacts
of the system. Put 7 = 0. Let 7; be the moment of the ith tact’s termination, { = I,
2, .... Arandom element T; ¢ T = {PW, T® TV} denotes the server’s state
at the time interval {r;_1,7:]. A random clement I’y € T denotes the server’s state at
the epoch 7p. Further, a random vector &; = (K, K24, ..., Kn;) describes the sizes of
the queues at the time instant 7; taking into account secondary customers, and a random

etement x; € {e,e®, .., e} is the random environment’s state during the time interval
(7, Ti41]. Lemma 1 from {3] states that given an initial vector (TG, k¢, Xo) the sequence
{(I‘f!ﬁfs Xi)’l =0’ 11 . } : (1)

is a Markov chain. We shall write d = | when the environment states form a single
aperiodic class, otherwise by 4 denote the number of cyclic subclasses. Let Cy, Ca, ..., C3
be the sets of environment state indices for each subclass. Put for convenience Co = Cj,

Gz, = C1. We assume that when d > 1 the subclasses are numbered in a way the following
transitions {e®; £ € i} - {e®; k€ Co} 5 ... - {e®; k € C;} take place. Put

Xi={x:xcX h{x)=j}
forj=1,m Foos=1,m+l,weX,k=1,dandi=0,1,... define
QFP(w) =P({w: Iy =T9, k; = w, x; = e¥}),
AP = A0 A0 A
Ft, 2], k) = exp{AP (1P (2) - D).
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Let functions P.(#; 7, k), ( =0, 1, ... be defined with means of series expansion

o0

Fit,zij k) = Y 2R (:].k).
(=0 )

Here Pc(t;j, k) equals the probability of ¢ arrivals during time ¢ at flow II; when the
environment is in the state e, Finally, let ' = (], 44, ....45) € X.

Theorem 1 in [3] gives recurrent equations for probabilities Q" (w) with respect to
i=0,1,.... As a corollary of the cited theorem we obtain that the states space of the
Markov chain (1) forms at least one communicating class,

(T x,e):s=12,....m+ L xeX; k=1,2,...,d},
if d is odd, and for even d splits into two communicating classes,

{(I‘U’,x,e“)):j= 1’2'_._,m; X EX; keC; UCsU...UCE_l}U
u{M™ x,eM): x e X; ke QUGU.. UG 2)

and

(P9, x,e®): j=1,2,...,m; x€X; k€ CUCU...UCU
() g, e®): x € X; RECUGU... UG5} 3)

In case of even d two Markov chains with state spaces (2), (3) have to be considered
separately. In this paper we present results concerning state space (2). Space (3) can be
investigated in a similar way.

For a real or complex vector v = (0,02, ..., Uy) and a vector @ = (wy, W, ..., Wn) €
X with non-negative integer elements denote the product vy 'vy? - - v®™ by v* (assumting
here 0° = 1). Introduce probability generating functions

Mi(v,s, k) = Y v"Q (w),
weX
(k)

Mi(v,j, k) = Y Q" (w) +Q}“""(0) Ik
II’EX}

R(k) (0) =0} —1 ZU p(k)(w)
weX

aad Laplace-Sticltjes transforms

(o) = / TTFtun R 4B

0 r=1
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1) = f ﬁﬁ(:, 0,37, k) dBy(6).

0 re=]

Here || < 1 for every j = T, m. Theorem 3 in [3] gives recurrent equations for probability
generating functions defined above. For v =1,d, k € C,, | = 1,mandi=0,1,...

Mini(0.k) = 37 as(4 @R OT(w.1. 1 + QO

IGCu_
m (f“’(v;) - l)q}"co)k“’(v)) @
Mo, n k) = Z B Z oMo, r, ). | 5
= r=1 _ .

Theorem 1. Assume d is odd. For positive vy, Uy, ..., Uy and positive integer g the
Jollowing inequality holds:

d g m
Zgﬁnzg(v, n,R} < Z Z gy o1 Olng 1 ogz * " * Wtpty 0V (0) G (0) x
=1 & by dag=1 10 o, fg=1
x Rw(v)q;s)(O)th(vmy(v) 7 (@)g R (0)Milv. n, byg)+

(fz)
+ Z Z‘% ,q);:')(0)qu"'}(U)R“"'}(U)Q(:g)*z(())
t.la=1 ji=}
d m
+ Z Z Q133,049 :])(U)q{m(U)R(b}(v)q(h)(U)x

bode By ly=1 1. o=l

" '
,\(lz) ¥ (U‘h) . b+

!
xq,‘,“)(v)R,i“’(U)Q{:zlg—ll(o):\'(m(f m)(v"” D+

d m
Y GOy iy, ;,qf,’“(v)q},‘*’(v)R“*’(a) 5) () x
holo dog=1 1 joven fg=1

x g @R () 320, P R (0)Q" o g (gw(a,,, ). ©
The proof follows directly from equations (4), (5) and lemma 1 below.
Lemma 1. For positive v}, Ug, ..., U, j=1,2,..., mul=1,2 ..., d we have
M. j, 1) < Mo, n, ). Q)

Denote b {ak, = T,d} the stationary distribution of Markov chain {x;;i =0,1,...},
denote by 7,0 = 3_ x y,pf”(y) the expected number of secondary customers in the rth
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queue generated by a customer from the jth quene if the environment is in the state ¢'®,

K
TI'(k) — ( ( ))]r = Define
d
= (“f")j,r_nm = zakﬂ.(k}’
k=t
= mm= 2, 2ma®  forevend,
RECUCU.. Ucd '
:, B = e
(k) sz( ,')’ x(k} - ,\wu(") S - (A{Ik)" xgt)’ o ’\f:))r’
b=]

5,.=f0 tdB(t), ;3~‘,-=[O rdB,-('t),'_ |
B=(1.Be....0n) B=B.Bo....Bu). -

Theorems 2, 3 below give necessary conditions for the stationary distribution existence
for Markov chain (1).
Theorem 2. Assume d is odd and one of the alternatives hold:
1) the greatest in magnitude eigenvalue R of the matrix « is greater or equal 1, or
2 R< and (B+B)YIn—=")"(Tr, aA0) > 1.
Then for every (I w,e®) € T' x X x {e",e9, ..., e} and independently of the
distribution of (1, kg, xo) one has
lim Q¥ (D) = ®)
i~ : : :
Theorem 3. Assume d is even and one of the alternatives hold:

1) the greatest in magnitude eigenvalue R of the matrix & is greater or equal I, or
2JR<Yand

(B+ B)Um — 7T)"! ( | ) za,xm) (Z Bf) (fj(ﬁ; + B,-)) e
=1 i=

IECIUCHD..Cy_,
+ (B4 Bl - ) ( 5 zag:\m) (z 51) (z(ﬁ, + ﬁ,,)) > 1.
1ECUCU.. G =1

Then for every ('), w, e®)) from (2) and independently of the distribution of (Ty, ko, Xo)
one has (8).

Stability conditions for the fluctuations of queues sizes are given in the next two theo-
rems.

Theorem 4. Assume d is odd, the greatest in magnitude real eigenvalue R of the non-
negative matrix 7 is less then unity and

d
(B+B)Un — 73 02?) <1

=]

259




Then the sequence {E(}_, %;:);i =0, 1,...} is bounded. .-

'Theorel‘l_l 5. Assume d is even, the states space (2), the greatest in magnitude real
eigenvalue R of the non-negative matrix 7 is less then unity and

m m -1
(84 B)(ln ~ &) ( > ) (Z B;) (S + Bf-)) +
GGG, i=1 i=t
_ , m m -1
+{(B+ B)Un - v‘r’)“( > 2a:A"’) (Z B;-) ( (8 + Bf)) <.
{€CUCH...Cy j=1 j=1

Then the sequence {E(}:)’f‘=1 k)i =0,1,...} is bounded.

Inequality (6) helps to prove Theorems 2, 4 using iterative-magoriant approach (see,
for example, [3]). Together with Theorem 2 from the cited work the last two theorems
give conditions for the stationary distribution existence for the Markov chain under study.
Proof of Theorems 3, S is done using inequality similar to (6). It is interesting to note that
averaging of random environment influence onto input flows and secondary customers is
done independently.
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