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In this paper a problem of a limit distribution calculation in a queueing network with an
overloaded node and with a node replaced by another queueing network are considered.
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1. INTRODUCTION

In this paper a problem of a limit distribution calculation in a queueing network with an
overloaded node is considered. This problem originates from an analogy between queueing
networks and hydrodynamical models. So it is natural to analyze an overloaded regime in
queueing networks as an analogy of a turbulence flow in a fiuid.

2. QUEUEING NETWORK WITH OVERLOADED NODES

In this section we consider queueing networks in which some nodes are overloaded. In

the overloaded node a service intensity does not exceed an input flow intensity and so in

- this node an infinite quene is created. Then a Markov process which describes numbers of

customers in the network nodes does not have a limit distribution, We construct a model

which allows to calculate the limit distribution of customers numbers in underloaded nodes
of the network.

In this model each overloaded node becomes a source of a Poisson flow of customers
with an intensity which coincides with a service intensity. This assumption changes a
system of balance equations for input flow intensities of the network nodes and allows to
calculate a limit distribution in underloaded nodes by the Jackson product theorem.

3. UNDERLOADED NETWORK

Consider the queueing network G with the Poisson input flow and the intensity A and the
nodes set Jo = {0}USy, So = {1, ..., m}. Here the node 0 is the external source and the node
k consists of a single server with exponentially distributed service times and the parameter
e, £ € 5. A customers displacement is defined by the route matrix © = ||6',-f| |: jes,, Where
6;; is the probability of a customer transition from the rode i to the node §. Suppose that all
nondiagonal elements of the matrix © are positive. Then the route matrix © is indivisible
and consequently there is the vector {7y, s € Sp), 7 > 0, & € Sy, so that the system

/\k ot Z A;G,-k e )\90;;, k c SU, (1)
i€8%
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has the single solution [1] A(7,, s € So). |

“Numbers of customers in the network nodes are described by the Markov process x(t)
with the state set X = {x = (x,, s € S} : x > 0, & € Sy} and positive transition
intensities S
Lix,x + &y) = Mps, L{x + x4, %) = p130s0,
Lix+ ep,x+ €)= by, k,i € Sq, R#1i.

Here €, = (e, 5 € Sp) is [Sp[-dimensional vector in which the component ¢, = 1 and all
others — 0, |M| is a number of elements in a finite set M. If

pg=ﬂ<l,ieso, 2)
1

then the process x(f) is ergodic [2] and its limit distribution P(x) is calculated by the
formula [1]
Pe) = []mtx), mitx) = (1 - oo}, x € X. (3)
icSo
Consider the queueing network & with the Poisson input flow and the intensity A and the
nodes set Jo = {0}USy, So = {1, ..., m}. Here the node 0 is the external source and the node
k consists of a single server with exponentially distributed service times and the parameter
g, k € Sp. A customers displacement is defined by the route matrix © = ||0,-f| |:.jesr» where
8;; is the probability of a customer transition from the node i to the node j. Suppose that all
nondiagonal elements of the matrix © are positive. Then the route matrix © is indivisible
and consequently there is the vector {y;, s € Sg), v > 0, k& € Sp, 50 that the system

M~ Y A = Mo, & € S, )
i€ .
has the single solution [1] Aly;, s € Sp).

4. OVERLOADED NETWORK

Suppose that the condition (Z) which characterizes underloading of all network podes
and guarantees the process x(f) ergodicity (and a calculation of its limit distribution by the
formula (3)) is not true. Assume that there is a ndnempty set /o C Sp and a positive number
Ap satisfying the condition

Ha . b '

— ' k ! , < —_— = y == 1 .

P €, A mfsl;l o /\0 S Sa\ 0
Construct a Markov model of an overloaded network by an assumption

oS A< X | | )

Suppose that overloaded nodes & € J work as sources of Poisson flows with the intensi-
ties u; and absorb all other arriving customers. To define input intensities A, of underloaded
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- nodes & € S the system of balance equations (1) (in oveﬂoaded nodes A is replaced by
I, k € L) is replaced by the system

Ay - Z A = M80s + Y _ piBjp, k€ Sy, (6)
i€S i€h '

To find Ay, k € Sy, on the nodes set J; = {0} US, define the route matrix I = |{r;); jes,

;=0 i,j €S,

A
mgj = Py 0;+Z,\m O €S, p= Zﬂu

tely tEly

mio=00 +29;:, i€S,
Cotely

(900+290r)+ZAM (ew+29,s)
fely tely s€f
Then the system (6) may be rewritten in the form (A = A + )

Ak—ZAﬂTjk=A7r0k=/\90k+2ﬁj9jk: ke S, (N
€S i€l

7"00—

By a construction the route matrix I = TI(}) is indivisible for any A > 0. Then for any
A > 0 from [1] obtain that there is the vector

(As, s€S81) = (As(A), s€81), Al(M) >0, k€ Sy,

which is the single solution of the system (7). Consequently there is the reversible matrix
T (with the dimension |S;| x |SI| and with elements which do not depend on A} satisfying
the equalities

(As, s€S) = (’\6034‘2#;9]5, sE S]) T.

i€ty
Denote

i€l

= (9053 SE Sl)Ti bs = (Zﬂ'}a;:) T: s¢c Slv

then A;(A) = a;A + b, A > 0 and so
.a.s)O'szO,sESl- : (8)

Numbers of customers in the underloaded nodes of the overloaded network are described
by the Markov process y(f) with the state set

Y={p=0 s€S): 420, keS}
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and with the positive transition intensities -
Liy,y + Ez) = Anos, Ly + Ep.3) = ttaTro,

L+ Epy+E)=mu, ki€ S, k#1.

Here E, = (Eys, s € S)) is |S,|-dimensional vector with the component Ekk = | and with
all other components - 0.

The formulas (1), (5), (7) Tead to the equalities Agve = Ae(No), & € 8. So from (5), 8)
obtain

A
M > A= E(ak)\o + by) > (@A + b)) = Ap(X), R € Sy )
The formulas (1), (5) give that
- Ad(A) = A(Ao) = Aoflo s + ZAW;Q;.:_: e, L€ Iy (10)
€S

So in the overloaded network the underloaded nodes remain underloaded and overloaded
nodes - overloaded. Thus in the conditions (5) the process y(t) is ergodic [2] and its limit
distribution P(p) is calculated by the formula [1}]

P(y) Hﬂ'x(yr) “-:(yt) = (1 - pg)ﬁm ¥ € Y (11)

{=A7)

where
= —, ied.
LT
Denoﬁe Al = Mminges, 4%, As the formula (9) is true so we obtain £5% > & =
k € S, and consequently ,uk > Aw(Xo), BE Sy,

A0</\|.

All considerations of this subsection may be generalized to the case when the conditions
(5) are widen to

a +bn/lo‘

Ao € A< A (12)
Indeed, in the conditions (12) the inequality 1 > AR(A), & € Sy, is true automatically and
the formula A;{\) > gy, t € Iy, follows from the formulas (8), (10). The conditions (5)
distinguish the ﬁrst subset of overloaded nodes J;. The second subset /; is defined by the
equality /) = {i : a‘ = A }. Then the consideration of this subsection may be repeated.
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