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We investigate a processor sharing system in which each customer has three interdepen-
dent random characteristics: the required number of homogeneous discrete resourse units,
capacity (volume) and service time (length). The total capacity of customers and the total
number of discrete resourse units are limited. The type of a customer is defined by the
number of resourse units required for his servise. We determine a stationary distribution of
the number of customers present in the system, as well as the loss probability for a customer
of each type.
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1. INTRODUCTION

Processor sharing models have been used to solve various problems occuring in com-
puter and communicating systems designing. Presently, they are applicable to sitnations
where a common resourse is shared by a varying number of concurrent users {1] (for ex-
ample, to WEB-servers modelling {2]).

Let £ be the length of a customer, i.e. £ is a customer service time, under condition
that there are no other customers in the system during the customer service. We shall also
usc a notion of residual length of a customer. This is a rest of service time of a customer
after some time moment {, under condition that there are no other customers in the system
during the time of service termination of the customer.

Results obtained in the present paper is a generalization of ones obtained in {3].

Consider the system that differs from the classical M/G/1 — EPS system [2] in the
following properties.

1. The system contains N units of some homogeneous discrete resourse. Each customer,
independently of his arrival time and characteristics of other customers, requires m (m < N)

N
units of the resourse for his service with probability gn, Y, gn = 1. In the sequel we refer
m=1

to a customer required / units of the resourse as an m-customer or a customer of type m.
2. Independently of other customers and his arrival time, each m-customer is character-
ized by the random capacity (,, (the random variable (,, is not necessarily discrete) and the
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length &,. The distribution functions
Fult,) =P{Cn < x,En < t}, m=1,n,

are given. Denote by 7{{) the number of customers in the system at time ¢, and denote by
o(t) the total capacity, i.e., the total sum of capacities of customers that are in the system
at this instant.

3. The total capacity o(f) in the considered system is bounded by a quantity ¥V > 0,
which is called the memory capacity.

Denote by L,(x) = F,(x,c0) the distribution function of the capacity of m-customer,
and denote by B, (¢) = F,(oc, ) the distribution function of his length. If at the arrival
time 7 of an m-customer there are less than m free units of the resourse in the system, the
customer is lost and has no effect on further system behavior. If the required amount of
free resourse units is available, the customer is nevertheless lost if his capacity x is such
that o(7 — 0) + x > V. If there are sufficiently many free resourse units at the arrival time
and the condition o(r — 0} + x < V is satisfied, then immediately after the arrival of a
customer his service starts; here p{r) = plr -~ N+ lando(r) = a(r - 0) + x. If 7 is
the service termination epoch for a customer of capacxty X, then 9(1} = n(r — 0) — | and
oty =0o(r—0) -

Clearly, for the system in question a stationary mode exists, if the inpute flow parameter
a and the first moments £y, ..., fy; of lengths of customers of all types are finite.

For the considered system, we find the distribution of the number of customers in the
system at an arbitrary time instant in stationary mode, and also stationary loss probabilities
for customers of each type. '

2. PROCESS AND CHARACTERISTICS

Assume that customers in the considered system at an arbitrary time instant { are enu-
merated at random,; i.e., if the number of customers is &, then there are k! ways to enumerate
them, and each enumeration can be chosen with the same probability 1/k!. Denote by v;(f)
the number of resourse units that are used by jth customer at time ¢, and denote by o;(f)
the capacity of this customer. We denote by £ (f) the residual length of the jth customer in

the system from the time instant £,
"~ One can easily show that the system under consideration is descnbed by the Markov
process

(0, (), 036, &), = T . M
0 . .
Note that in our notations we have o(f) = _Za;(t). In what follows, to simplify the
notation, we denote Ry = (rt,.... %), Vo = (41, ..., o)y Ri = {11, o) ity Fjtts - - - T2} a0d
similarly Y" @1y - Yim1: Yjats - - - . Ye). We also assume 7y =1+ -+ + 1.

Somenmes, in the case & = 1, instead of R| and Y, we write, respectively, r; and g
or the values that these components take, and in the case & = 2, instead of R; and 2 we
write {7}, r2) and (41, y2) or their vatues respectively. In other words, we sometimes specify
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vectors of small dimensions by indicating their components. We also use the notations
(Re,m) = (r1,...,rp,m) and (Y, 2) = (41, ... 4%, 2). We denote the all-one vector of
dimension % by 1. '

We characterize the process (1) by functions with the foilowing probabilistic sense:

Go(x, Ry, Yoo t) = P{n{t) = k,o(t) < x, vty = i, () < g i = LEL k=1, N, rgy < N;
{2)
O4(Rs, Yh ) = P{n{t) = R, v;(8) = 1, £ () < yi,i = 1, &} = Go(V, Re. Vi, ), k=1, N,
(3)
re < N. We also introduce the functions

We(Re, ) = P{n(t) =k vty =1,i= 1k} = lim ek(Rk,]’}e.f) k=1,N,rg < N;

(4)
Po(t) = P{n(t) = 0}; - 5)
AW =Plnt) =k} = 3 M(Ry0), k=TN; ®)

fins <N

Asume that N < 0o or (and) V < oo. Then, a stationary mode exists if p = af}; < o0,
where 81 = q1811 + -+ + g By is the first moment of the total service time in the system,
ie. 9(f) = n, a(t) =0, y;(f) = v; and &} (f) = & in the weak convergence sense. So, the
- following limits exist:

gu(x,Re, 1) = }_ig"on(x, Ri, Yo, ), k=1,N, rgy < N, (7)

0, (R, Vo) = fl_lglo Ou(Re, 12, 1) = gV, R, V2); (8)

7e(Re) = lim T(Re, &) =  lim 9&(&, Y,), k=1,N, rpy < N; )
=00 Pyl 00

Po = fl_i}lng(t); ' (10)

p=limP{t)= ) m(R), k=TN. (1
sy

Note that the functions Gy(x, Rg, %, 1), gu(x, Re, Ya) and ©4(Ry, Y2, 1), 04(Rs, ¥2) are
symmetric with respect to simultaneous permutations of components with the same indices
of the veciors R and Y, due to our random enumeration of customers in the system.

Denote by

Halt,4) = P{Gn < .60 2 4} = f " dFa(o,u) =
U=y

=P{Cm <x}_P{Cm <xs£m <y}=Lm(x)_Fm(xry)- (12)
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3. STATIONARY DISTRIBUTION OF THE NUMBER OF
CUSTOMERS .
Using the method of auxiliary variables [4], we can write out partial diﬁ‘ef¢nﬁal equa-
tions for the functions defined by (2)-(6). Then, passing to the limit as { = oo, we obtain
the following stationary equations for functions (7)-(11);

0= -am 3 tuLaV) +Zj 39“’;’ .4

m=1 -

; (13)

y=0

_9ulmy)  m.y)

\ N—m v -
= agupoFulV.9) -2 ) _ 4 /0 gV —x,m y)dLi(x)+
i=1 .

ay 89' y:ﬂ
=0 -
391(N,y) 39,(N, y)
- + =q Fu(V, y); 15
BE: ae,,(Rk,Yk) GRA a /V o
=T 7] - (V - X, R": Yf)dxF,}.(x, )_
;[ 9 ly=o kgq’ 0 ! ¢ 7
-—afo] f (V RAA (x)+Nf] 0011 {(Re, m), (Y, 2))
In & ks T 2 B o
k=2N—l, rm <N, N2>2 (16)
N N 14
MOn(ln, Y (i, Y,
-3 [Pt I gy S [ (V- e, KR,
f=l yf ayf y;:ﬂ j=l 0 .

N>2 (i7)
In the stationary mode, we have boundary conditions described by the following equi-
librium equations:
891 (m’ Y )
By

agk((Rk-l v m)! (Yk- ls 2))
0z

= QQMPULM(VL m =TN-; (18)
¥=0 _

v N
= ag. [ itV = %, Ret, Yoot )AL ),
1]

z=0
k=ZN, rg-y+m<N, N>2. (19)

To these relations, we should add the normalization condition, which can be represented
as follows:

N
P+ Y mRy) = 1. - (20)

k=1 rR}SN
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Introduce the function ®¥(x) = [ H;(x, u)du. Its meaning becomes obvious if we use
the representation Fi(x, u) = L;y(x)B;(u | {; < x), where Bz |(; < x) = P{§; < u|(; < x}
is the conditional distribution function of the length of a j-customer given that his capacity
is less than x. Then (12) implies ®Y(x) = L{x) fJ{1 — B{(z1¢; < x)du.

Let us also introduce the following notation for the Stieltjes convolution:

Foxe s Fyx) = % Fi(x).
i=1

Using the above-mentioned symmetry property of functions (7) and (8) and taking into
account boundary conditions (18) and (19), one can show by direct substitution that the
solution of equations (13)-(17) can be represented as :

g(x, Ry, T;) = Ca* Qy,(x)n% E=TN, ryy <N, 21)

=1

where C is a constant to be spe01ﬁed later from the normalization condition (20). It foliows
from (8) that

&’ , u S
0e(Re, Ye) = Ca* x & (V) [] g, #=T.N, ry < N. (22)

=1 =1

Introduce the notation D;(x) = [, [= dFj(s, y), m = 1, N. The function D;(x) has
the meaning of "partial” mathematical expectation {5] of the random variable £; with respect
to the event {¢; < x}, i.e., D;j(x) = E(¢;, ¢ < x) = E(& | {; < x)L;(x), where E(§; | (; < x)
is the conditional mathematical expectation of the length of a customer of type j given that
his capacity is less than x. It is easily seen that

Dy(x) = lim @!(x) = L) f (1= Bi(ul¢ < &)ldu.
=00 0
Using relation (9) we obtain

74(Rs) = Ca* * D,.;(V)Hq,, k=TN, rgy < N. (23)

i=1

It follows from (11) that p, = Ca* Z(:N’*l D, (V) ]'I1 Gy k= 1,N. The latter relation
fix) = =

and normalization condition (20) finally yield
pe=poa* y  x D,f(V)Hq,,, =TN, (24)
r(*}<N " .

where

I+Za S D,I(V)qu : (25)

&=I s s <N f

232



4. LOSS PROBABILITY

'Finding the stationary loss probability P,,,, m=1N for & customer of l:ypc m is based
on the fact that in stationary mode the average number of customers admited to the system
within a time unit (i.e., customers who entered the system during this time period and were
not lost) is equal to the average number of customers whose service was terminated within
this time period. Thus, taking into account the symmetry of 6,(R,, ¥;) with respect to the
above-mentioned permutations of components of vectors {Rk, Y:), we obtain the following
equilibrium equation: S

N-m+l - ‘
00,((R;—-,, m),{o0;_y, 2 —
an(t-py= 3 Y PGB,y
=l oy <N-m z=0
where oo;_; = (00, ...,00) is a vector with / — 1 components. The latter relation, taking

into account (22) and (25), yields

N-m .
Pu=1l-p [LM(V)-#Zaf Y Lnx (= q) (V)quf} (26)

j'=l ru)SN m f=1

Then the total loss probability is defined by the relation

P= qu -—1~pqum[,.(V)+Zaf Y L *(*D,,) (V)Hq,,].

m==| m=} =1 rpSN—m i=!

Note that direct application of obtained relations happens to be inconvenient for com-
putation in the general case. Therefore, "direct” practical application is possible in certain
particufar cases (see ex. [3]).
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