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We consider a tandem queueing system consisting of two phases and having an interme-
diate buffer. The first phase is represented by the BMAP/G/1 queue. After service at the
first phase a customer proceeds to the second phase which is described by a multi-server
queue with a finite buffer. A customer leaves the system forever or waits service at the
second phase in the buffer if it completes the service at the first phase and meets the buffer
being full. The waiting period is accompanied by blocking the first phase server operation.
The stationary distribution of the system states at an arbitrary time is derived. The depen-
dence of the system performance measures on the correlation in the input flow and buffer
capacity is numerically illustrated.
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1. INTRODUCTION

Tandem queueing systems are good models of many real-wozld two-node networks as
well as fragments of general computer and communication systems. They are widely used
in capacity planning and performance evaluation of telecommunication networks, service
centers, and manufacturing systems, In this paper, we deal with a tandem queue under the
assumption that customers arrive according to a batch Markovian arrival process (BMAP)
which is an ideal to model correlated and bursty traffic in modern telecommunication net-
works. The queue under consideration has a multi-server second phase and an intermediate
buffer providing losses of customers and blocking the first phase server after the service
completion at the first phase. Previously such a system has been considered in [1] where
the results concerning the condition for the stable operation of the system and the stationary
distribution of the system states at embedded epochs were obtained. Here the steady state
distribution of the system states at an arbitrary times is investigate.

2. MATHEMATICAL MODEL

We consider a tandem queueing system consisting of two phases. The first phase is
represented by the BMAP/G/]1 queue. The BMAP input is defined by means of the
underlying process v, { > 0, which is an irreducible continuous-time Markov chain with
the finite state space {0,..., W} where W is some finite integer. Arrivals occur only
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at the epochs of the process vy, t > 0, transitions. The intensities of transitions which

are accompanied by an arrival of a batch consisting of %2 customers are combined to the

matrices Dy, & > 0, of size (W + 1) x (W + 1). The matrix generating function of these
o0 . .

matrices is D{z) = 3 Dy2*,|2| < 1. The matrix D(1) is an infinitesimal generator of the

k=0
process v;, § > 0. The stationary distnbution vector @ of this process satisfies the equations

68D(1) = 0,8e = 1, where e is a column vector consisting of 1’s, 0 is a row vector
consisting of (0’s. The main characteristics of the BMAP are calculated by: the average
intensity A = 6D'(z)|,-je; the average intensity of group amivals A\, = @(—Dp)e; the
variation coefficient of intervals between successive group arrivals ¢Z, = 2X,8(—Dy) ‘e —
l; the correlation coefficient of the successive intervals between group arrivals ¢, =
(A8(—Do)~1(D(1) — Do)(~Dp)~"e ~ 1)/cZ,,

The successive service times of customers at the first phase are independent random vari-
o0
ables with general distribution B(f) and finite first moment b, = [ tdB(f). After receiving

service af the first phase a customer proceeds to the second phast(:) which is represented by
N independent identical servers. The service time by a server is exponentially distributed
with the parameter > 0. The second phase has a finite buffer of capacity R < 0o. If a
customer completes the service at the first phase and meets the buffer being full, 1t leaves
the system forever with probability v, 0 < v < 1. With probability 1 — v the customer
waits its service at the second phase in the buffer. The waiting period is accompanied by
blocking the first phase server operating.

3. THE STATIONARY DISTRIBUTION AT AN ARBITRARY
TIME

The process of the system states at an arbitrary time is defined as &; = {i;, r;, 4}, { > 0,
where i, i; > 0, is the number of customers at the first phase, #, r; = O,N + R, is the
number of customers at the second phase, vy, v; = 0, W, is the state of the BMAP at
time £, ¢+ > 0. The process &, { > 0, is non-Markovian but it can be shown that &, ¢ >
0, is a semi-regencrative process (see [2]) with the embedded Markov renewal process
{£s, 1.}, n > 1. Here t, is the nth service completion at the first phase, £, = {iy w2, Yu}>
n > 1, is an embedded Markov chain, where i, is the number of customers at the first
phase at the epoch ¢, + 0, i, > 0; r, is the number of customers at the second phase at the
epoch £, ~ 0, 7, = 0, N + R; v, is the state of the arrival direciing process v at the epoch
tes Uy =0, W.

Using the theory of semi-regenerative processes, the stationary distribution of the pro--
cess &, £ > 0, can be related to the stationary distribution of the embedded Markov chain
£, > 1 investigated in {1).  In this paper the condition for the stable operation was de-
rived and the stationary distribution of the chain §,, n > 1, was calculated by means of the
use of results for quasi-Toeplitz Markov chains {3]. The sufficient condition for existence
of the process £, ¢ > 0, stationary distribution coincides with the necessary and sufficient
condition for ergodicity of the chain £,, n > 1. So, we will use the results {1] to obtain the
stationary distribution of the process &;, ¢ > 0.
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For further use in the sequel, we introduce the following notation:

‘e [ is an identity matrix of appropriate dimension. When needed the dimension of the
matrix is identified with a suffix;

» & is the sign of the Kronecker product of matrices, see, e.g, [4];

s ding {a;, { =1,L} is a diagonal matnx with diagonal entries a;;

o Dy =Inigsi ®Dp, 20, D(2) = ZD;:Z*, lzf < 1;

_ k=0

o P{n, ) is a matrix whose (v, /)th entry defines the probability that n customers arrive
during the interval (0, ¢] and the state of the process v, at the epoch ¢ is /, given
vo = v. The matrices P(n, {) are defined by the expansion . Z_‘, P(n, Hz" = eP@¥, |

o d,.(f} is the probability that in the time interval of the length t the number of cus-

tomers at the second phasc is decreased from 7 to r':
(0, r <1, .

( ’ )“""""‘(l — ey 0< P <P N

O, () = ¢ f Np(Nury —N-1 N N ) o= t=1)
{r-N-1}! r ‘
X(l — e #t=DN-" Q< « N<r<N+R;

r-r‘
| M eV N<r<N+R N<r<N+R

fe <]
¢ 6() = GCrOpiwim A=) amm D = [ (e,
0
o 4, Q; are square matrices of dimension N + R + 1:

010..0 00 ..00
001 ..0 00 ..00
Q=]+ e Q=
000 .. 1 00..00
000 ...0 00 ..01

o W=W+1;

. Qm Qns@!W: =1,2
e Q= Ql +9Q: + (1 —'}')Q2®(Nﬂ(-Do+Nﬂf)'l)
o ), = f&(t) ® P(n, (1 ~ B(H))dt, n > 0, Qz) = E Q2"

n=0
. Rl,RQ,Rs are diagonal mamces of dimension N + R + 1: R} = diag{r, r =

ON¥R}, R, = diag {0,.. .0}, Ry =diag{0,...,0,1,...,R}.
Denote the stationary state probabilitics of the Markov chain & = {istn.vs} by
w{i,r,v),i 2 0,r = OON+R, v = 0,W. Form the row vectors #, i > 0, of these

m .
probabilities listed in the lexicographic order and let TI(2) = Y m;2', [2| < 1, be the
. i=0
generating function of the stationary state probabilities.

Denote the stationary state probabilities of the process &, £ > 0, as p(i,r,v)
!l_i>rn P{& = (i,r, )} i 2 0,r =0,N+R,v = 0,W. Form the row vectors p{i,r) =
ol

It
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@G, 7,0),pG,17.1),...,p(, 0, W), p,= (p(.0),p(i, 1), ..., p(i, N + R)), i > O, of these
probabilities and introduce the generating function P(z) = 3 p,2', |2 < 1.
i=0

Theorem 1. The stationary probability vectors p,, i > 0, of the process & =

{ie.ri.vi}, t > 0, are related to the stationary probability vectors m;, i > 0, of the em-
bedded Markov chain &,, n > 1, as follows:

Py = T"l*oQA,

i >~
pi=7"{mo Z[QADk +{(1-7Q:8 fP(k, ONpe " d1)0y,_,
=1 . 0 . ’ .
1 — Qe ® f P(i - 1, )eMdt
| 0 |
i-1 i1 o
+ L ml@ +90)has + (1) S [ (b ON e dth 4]

{=0) k=) ‘0

i=1 oo
H1-) Y mQ o [P~ 11,06 Mar), i 1,
=0 0

where T is the mean inter-departure time at the first phase
7 = moQ(=Do)~'e + (NH{(Q1 + Qo) + (1 - NN ) ']e.
Corollary 1. The generating function P(2) is expressed in the following way:
P(2) = py + 77 {mo[QA(D(2) — D)

+(1 - Q& Nul((—D(2) + Nul) ™' — (=Do + Nul) HIz)
+(1 ~ 1)21(2)Q: ® (~D(2) + Nul)™
+(1(2) — m)[Q) +¥Q2 + (1 - 1)Q2 ® Nu(~D(2) + Nul) ' 182(2)}.

Based on the stationary distribution at an arbitrary time, we can calculate variuos per-
formance measures of the system at an arbitrary time as follows:

o The mean number of customers at the first phiase L, = P'(1)e.

o The mean number of customers at the second phase Ly = P(1){Iy+z+; ® ep)R\e.

¢ The mean number of busy servers at the second phase Nmy = P(1){In,r+1 @€ ) Roe.
¢ The mean number of customers in the buffer Nw;,, = P(D)(In+re1 @ eplRze.

¢ The probability that the server of the first phase is idle Py, = pye.

o The probability that the server of the first phase processes a customer P,orpe = 7718;.
o The probability that the server of the first phase is blocked P,‘f:cf") = 1 —Pigte—Pierve-
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4. NUMERICAL EXAMPLES

The goal of the numerical examples is to analyze the influence of the correlation in the
BMAP and buffer capacity on performance measures of the system.

We consider four BMAPs with maximal group size » = 3. The BMAP, is a group
Poisson process. It has ¢, = 0 and ¢, = 1. BMAP), BMAP; and BMAP, have the
same fundamental rate A = 2.5, variation coefficients ¢,,, = 2, and different correlation
coefficients ¢.or = 0.1, ¢sor = 0.2, and ¢, = 0.3 respectively.

The service time at the first phase is deterministic, & = 0.2. The number of servers at
the second phase N = 3, the probability of blocking after first phase v = 0.5, the mean
service rate p = 1.

Figures 1-3 illustrate the dependence of key system pcrformance measures on the buffer
size R for the BMAPs with different correlation coefficient.
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Fig. I. The mean number of customers at the first phase and at the second phase as
- functions of the buffer size for the BMAPs with different correlation
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Fig. 2, The mean number of busy servers at the second phase and customers in the buffer
as functions of the buffer size for the BMAPs with different correlation
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Fig 3. The probability that the server of the first phase is idie and blocked as functions of
the buffer size for the BMAPs with different correlation

Based on the figures one can conciude that the values of L, Nbusy, P,ffj::m decrease
and the values of I, Nbuf ters Piaie Increase when the buffer size R i mcreases for all BMAP:s.
It is clear that under the fixed value of the buffer size R the increase of the correlation
in the input flow has negative impact on the key performance measures of both phases of
the tandem and the quality of service in the system becomes worse when the correlation
increases. So, it is evident that correlation of the arrival process must be taken into account
because its ignoring can cause errors in prediction of system operation.

5. CONCLUSION

In this paper, the two-phase queue with intermediate buffer is stadied. The process
of the system states at an arbitrary time is investigated. The formulas for calculating the
steady state probabilities are obtained. The numerical examples illustrated importance of the
special treatment of the tandem queueing models with the BMAP are presented. The results
can be used for capacity planning, performance evaluations, and optimization of real-world
two-node networks in case of correlated bursty input and the discipline of admission to the
second phase providing losses of customers and blocking the first phase server.
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