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We consider IEEE 802.11 broadband wireless network with DCF (distributed coordina-
tion function) and finite buffers. The network operation is described in terms of a Markov
process which allows to caiculate performance characteristics.
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1. INTRODUCTION

IEEE 802.11 wireless networks with DCF (distributed coordination function) use carrier
sense multiple access with collision avoidance (CSMA/CA). The modelling of the network
performance is essentially different for cases of heavy traffic (2 station always has a packet
to transmit) and low traffic {(a station queue can be empty). The first case is investigated
in details in the literature, see e.g. [1, 2]. The casc of low or normal traffic is analyzed
in [3, 4]. The model! of a network with normal traffic proposed in [5] descnibes two
significant features of DCF: 1) asynchronous transmission which is made without a backoff
and starts immediately when a packet arrives to an idle station at the moment the channel is
idle; 2) final backoff implying that a station enters the backoff stage every time it finishes
transmission even if its queue is empty. In the paper, we analyze the case of finite buffers
and for brevity, we suppose the packets have the same size and consider the basic access
mechanism only. As it is made in [5], the results can be easily generalized to the case when
packets have arbitrary size and RTS/CTS mechanism is used, '

2. ANALYSIS OF IEEE 802.11 DCF WITH FINITE BUFFERS

Stochastic behavior of a station is described by a Markov chain where a station can be
in one of the following states: idle, backoff, transmission (collision or successful) and final
backoff.

Procedure of backoff and contention window increasing is implemented correspondingly
to CSMA/CA mechanism. Note, that a station enters a backoff stage after every transmis-
sion even if there are no packets in the queue. Two types of transmission are conasidered:
1) synchronous transmission that is made after a backoff, and 2) asynchronous one that is
made without a backoff when a packet arrives to the idle station and the channel is not busy.
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Synchronous transmissions are subjected to collisions since stations count down their back-
offs synchronously, and the backoff counters can drop to zero simultaneously. Whereas,
a packet transmitted asynchronously rarely suffers from collision. A station can start an
asynchronous transmission at any moment of time slot o, and the probability that it starts
at the end of the slot or along with the other asynchronous transmlssxon is negligible. The
network consists of 2 stations.

Let x(t), ¢ > 0 be the number of packets in a station queue at the time ¢, x{f) €
{0,1,2,...,K}; s(1) be the backoff stage at the time {, s(¢) € {0, 1,...,7/}. The value of
s(f) characterizes the number of unsuccessful attempts to transmit a packet. If transmission
fails at the stage 7, the packet is discarded. Let also b{f) be the backoff counter at the time
Lb(t) e {0,1,..., W — 1}, where W} = 270lmlW 0 < i <[, W = CWyy,, and m is
determined by CW,, = 2"CWy,.

As in [1], we suppose that at each transmission attempt, and regardless of the number
of retransmissions suffered, each packet collides with constant and independent probability
p. Let also 7 {7,) be the probability that a station transmits a packet synchronously (asyn-
chronously). The packets are supposed to have the same size and arrive accordingly to a
Poisson process with parameter A.

A time slot can be one of the following types: empty slot of size o when no station
transmits; successfil slot of size T; when only one station transmits synchronously; collision
slot of size T, when two or more stations transmit synchronously; asynchronous siot of the
mean size T, = T; + /2.

Let #, 2 > 1, be the &-th epoch when the backoff counter changes its value, and we con-
sider behavior of the station at the moments #;, 2 > 1. The process & = (x(%), s(f), b{1:)),
k > 1, is a Markov chain. Introduce into consideration the following condition probabilities
{given that the tagged station does not transmit):

o F,, the probability that an arbitrary slot is empty (the other n — 1 stations do not
transmit), B, = (1 — 7 — 7,}"7};

¢ P, the probability that an arbitrary slot is successful (only one of n — 1 stations
transmnits), P = (n ~ D7(l — 7)*"%;

e F;, the probability that an arbitrary slot is asynchronous (only one of n — | stations
transmits synchronousty, and the rest #n — 2 stations do not transmit), £, = (n —
Dra(l =78 -

o P, the probability that an arbitrary slot is colllsxon one, L.=1-P - P, - P;

e 1;, 5, a; and f; ar¢ the probabilities that { packets arrive to the tagged station during
an empty, successful, asynchronous and collision slot, correspondingly,

(/\0') e“")‘", a; = § = QE‘TS)—e'm, ti = ——-—(AZE:) B_AT‘.

Since nAo << 1, we suppose that no more than one packet amrives to the station
during a slot of size o, i.e. r; ~ Age™* = Ao and r; =~ 0 if i > 1. For the same
reason, we have q; = s;.

¢ q;, the probability that i packets arrive to the station during an arbm'ary slot g; =

Pori + Pssi + Pas; + Pet;.
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One-step transition-.probabili:ti\'es' of the Markov chain &, ¢ > 0, are the following:

P{(0,01(0,0)} = do+ oriP/W,  P{(0,)](0.0)} = sor, P/ W,
P{(k,0, )10, 00} = [ss(riPs + Po+ ) + PY/W, k=TK=T,

K-l -1
PH{K, 00,00} = (1 =Y sdnPe+ P+ P+ (1= Y t)P| /W,
k=0 k=0
K-l
P{(£,0,1 - D|(0,D)} = s, k=T.K =1, P{(K,0,l - D)0, D} = 1= 5 s,
k=0

P{(0,1 ~ {0, D)} = g, P{(O DI, 00} = [(1 ~ p)so + ploe{i = I}1/W, i =0.1,

P{k+m,isli— V)| (ki )} = qm, k=T.K=1, m=0K—E~T, i =01,
Kb . L
P‘{(K,l,l,-—l)'(k,l,l,)}=l— Z qm. k=1,K, i=0,],
m=0

Pllk+m—1,0,)|(ki,0)} = (1 - p)su/W, k=T, K, m=0K—F, i=07~1,

P*{{K,0,)I(k,i,0)} = (I - p) (1-%.%) /W, k=T, i=071-1,
P{k+m—1,0, )k, 1,0)} = [(1 - ;;.:m-i-ptm]/u’/ k=T1K, m
P{(K,0./)|(%,1,0)} = [(1 -p)l - Zsm) +p(l - Zﬁtm)] =1,K,
P{(k+m,i+ 1,0k i, 0)}_£ ~TK= l,mZO,K—k—l,i:O,I—l,

H-l

K—k-1
PK, i+ 1Lk i, 0)} =p (1 -y tm) [Wiark=T,K, i=0,1—1,

m=0

j=0W1,1=1,W=1,=1W- 1, e{A} is an indicator function, e{A} = 1 if A
is true, and e{A} = O otherwise.

The matrix P of one-step transition probabilities of the Markov chain 5;, t > 0 has the
block structure

[ Co A Ay A3 Ay oo Ag ]
G B B, By By --- B
O C B B By --- By,

P=|0 0 & B B --- Bp, | (1)
|o o 0 ¢ B - B,
0000 - ¢ B |

of size (W + BK) x (W + 8K), where 8 = i: W =-(2""+‘ — 142 — m)e{m < IHW.
i=0
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Below we describe the blocks of matrix P. The matrices C;, i =0, |, 2, are defined as

(qo+ 87 wgh ... mph mgR [Cio

qo 0 . 0 0 C][ _

Co= 0 g - 0 0|, ¢ =|[Cef,
0 0 -« g 0]  Cuy

where
Cy = wa(‘—‘;,éﬁ,ﬂ) 0<i<I~-1,Cu=Guy (Lﬂ@:e& 0),G = [& 0]

5 (r; P.+P;+P) +!,P;

A -[wa(xi,z.) O] where x; = and z; = g; if i < K;
= P*{(K,0, (0, 0)} and zx = P*{(K, 0 f— l)|(0 Nl

ok e x ] D E 0 0 0

’5 ’(; o D, F Ey -~ 0 ©

Y D, 0 F 0 0
Gaplx,y) = {0 ¥ 00, B={" . . . . .|

PoEoT Dy 0 0 e Fo B

0 0 y 0 D 0 0 .- 0 R

biocks of the matrix B are defined similarly and marked by asterisk.
D =Gy (9%, qi1) . D* = Gy (s, mi),

D, = Gu,w (L5%,0),07 = Gy (.0, =TT-1,
D = Guw (ﬁ‘-i%?ia‘s;o) D} = Gy, (g.0),
E =Gy (%2 0) Er =G B 0), =11

i W1 W (7 )J i W’}-;,,WJI( i» )’f rfs

Fi=Gyw (0,61}, F' = Gyw; (0,m), j = 1,1,
where i; = (1 —p)(1 = Yo s/ W, m; =1~ 2 g, g = PH{(K, 0, DH|(K+1~,1,0},
by = p(1 - IR 0)/w, |

Let m;; = limp,oo P{{x{t), s(t), b(8)) = (L i,/)} and mp; = lim,oo P{x(t) =
0,5(¢f) = j} be the stationary state probabilities of the Markov chain £, 2 > 1. Con-
sider the vectors m; = (100, F1o,1s .-y Taw-1) [ = K, 7w = (70,0, ... . Mow—1). The
stationary state distribution 7y, / > 0O, can be obtained by the matrix-analytical approach,
see e.g. [5, 6].

Having the vectors m;, [ > 0, calculated, we can obtain the probabilities 7 and 7, that a
station transmits synchronously and asynchronously in an arbitrary slot:

K 1
T= Zzﬂk.w» Ta=monhP, p=1-(-7"" @

k=1 i=0
The set of equations (2) with unknown 7, 7, and p can be solved numerically.
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3. NUMERICAL RESULTS

In this section, we compare the analytical results with simulation ones obtained using the
general-purpose simulation system GPSS World, [7]. We consider point-to-point channel
with symmetric traffic under ideal channel conditions. Initial data are taken from IEEE
802.11 standard with the nominal rate 54 Mbit/sec. We compare fractions of synchronous
packets and the mea~ *-'--m ~Mesiond meotedtionlios 2o d Les ettt Sop both models with
limited and unlimite . for the case when
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Fig. 2. Difference in packet delay for W = 16

As it is seen from figures, both models with limited and unlimited (see [5]) waiting
spaces give close results which coincide with simulation in case of low traffic. But when the
input intensity increases, the deviation of results for the model with limited waiting space
stops increasing in contrast to the model with unlimited waiting space, that significantly
enlarges an area of the model applicability in terms of fraction of synchronous packets
transmitted. The mean packet delay has the essential companison eror even when the
traffic is low, but for the model with limited waiting space it does not exceed 20%.
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