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Performance in terms of reliability of computer networks motivates this paper. Limit
theorems on the gueue length and virtual waiting time in open queueing networks in heavy
traffic are derived and applied to a reliability model for computer networks where we relate
the time of failure of a computer network to the system parameters.
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1. INTRODUCTION

Probabilistic models and queueing networks have long been used to study the per-
formance and reliability of computer systems [1, 2] and to analyse the performance and
reliability of computer networks and of distributed information systems [3, 4]. In this pa-
per, we will first briefly review the works related to using the queueing theory of computer
system reliability, and then present some new results on the estimation of the time of failure
of a computer network.

In one of the first papers of this kind [6], the reliability of execution of programs in a
distributed computing system is considered, showing that a program, which runs on multiple
processing elements that have to communicate with other processing ¢lements for remote
data files, can be executed successfully despite that certain system components may be
unreliable. In order to analyse the performance of multimedia service systems which have
unreliable resources and to estimate their capacity requirements, a capacity planning model
using an open queueing network is presented in [9]. In {5] a novel model for a reliable
system composed of N unreliable systems, which can hinder or enhance one another’s
reliability, is discussed. In [10], the management policy of an M/G/1 queue with a single
removable and non-reliable server is discussed and analytic results are explored, using an
efficient Matlab program to calculate the optimal threshold of the management policy and
to evaluate system performance. In [11], the authors consider a single machine subject
to breakdown and employ a fluid queue model with repair. In [12], the behaviour of a
hetecrogeneous finite-source system with a single server is considered and applications in
the field of telecommunications and reliability theory are treated.
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In this paper, first we present probability limit theorems on the queue length and the
virtual waiting time of customers in heavy traffic for open queueing networks. We consider
open networks with the “first come, first served” service discipline at each station and
general distributions of interarrival and service times. The basic components of the queueing
network are arrival processes, service processes, and routing processes among the different
queues. The queueing network that we study has % single server stations, each of which
has an associated infinite capacity waiting room. Every station has an arrival stream from
outside the network, and the arrival streams are assumed to be mutually independent renewal
processes. Customers are served in the order of armival and after service they are randomly
routed to either another station in the network, or out of the network entirely. Service
times and routing decisions form mutually independent sequences of independent identically
distributed random variables.

2. THE MATHEMATICAL MODEL

Let us consider the mutually independent sequences of independent identically
distributed random variables {Zn N P4 l} {Sm n> l} and{@m n> l} for | =

., k; defined on the probability space. The random variables z’and Sm are strictly
positive, and fbg’ have supportin {0, {,2,..., k}, We define u; = (M [S,({']]) >0, 0;=

D(S?) > 0and ), = (M [z,?"])" >0, =D (2) >0, j = 1,2,...k with all of
these terms assumed finite. Denote p; = P (,;,(:) = ;) >0,j=1,2,.

In the context of the queueing network being considered, the random vanables 2
represent an interarrival time from out51de the network at the station ;, while S is the nth
service time at the stanon , and @,, is a routing indicator for the nth customer served at
the station . If W = i (which occurs with probability pij), then the nth customer served
at the station { is routed to the station j. When &%) = 0, the associated customer leaves the
network. The matrix P is called a routing matrix.

We observe that this system is quite general, encompassing tandem systems, acyclic
networks of GI/G/1 queues, networks of GI/G/1 queues with feedback and open queueing
networks.

Let us define Q;(¢) as the queue length of customers at the jth station of the queueing

k k
network at time £, . §; = A+ i py — p; > 0, Er,? = (/\,;)3-1)2,(,‘;)+E ()% -DSY. (p,-,-)2.+
i=1 i=1
(5)°-DSP >0, j=1,2,...,kand t > 0. Also, let us define Wj(t) as the virtual waiting
time of customers at the j-th station of a queueing network at time ¢ (one must wait until a
customer arrives at the j-th station of the queueing network to be served at time ?), ﬁ,v =

&
/\}'“‘]‘_E“i'pij & ” 2 A2
;"——1>0,6?=pr;- ,--(a;-!—(——‘_) ‘0';’)‘!')&;'(0’;"‘(‘“‘!:) -a,-) >0,
Hi i Hi

i=1
fg LQ.----.kandt)O.
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We will also assume that the following “overioad conditions™ are fulfilled:

k
A;+Z#5'Pq>ﬂ;,}'=1.2.---,k‘ (N

i=1

Note that these conditions guarantee that the length‘ of ail the queues will grow indefinitely
with probability one. The results of the present paper are based on the following theorems:
Theorem 1. If conditions (1) are fulfilled, then

. {Qint)—B;i-n-t ‘f g
i (Ut ) [ g ()

0<t<Llandj=1,2,...,p.
and
Theorem 2. If conditions (1) are fulfilled, then

e (Vi) = Biont _/‘ (_y_z)
nll»ToP( F <x)— _wexp % dy,

0<t<landi=12,...r
These theorems are proved in [7], and the proof is therefore omitted here so as not to
lengthen this short paper.

3. THE RELIABILITY OF A COMPUTER NETWORK

Now we present a technical example from the computer network practice. Assume that
queues arrive at a computer y; at the rate A; per hour during business hours, f = 1,2, ... ,ptr.
These queues are served at the rate ; per hour in the computer v;, j=1,2,...,p+r. After
service in the computer v;, with probability g; (usvally p; > 0.9), they leave the network

and with probability pj;, { # j, 1 < <p+r (usually 0 < p;; < 0.1) arrive at the computer

v, &= 12,...,ptr. Also, we assume the computer v; fails when the queue length of
queues is more than &;, j = 1,2,...,p, and the computer u; fails when the virtual waiting
time of queues is more than~;, i = 1,2,...,r.

In this section, we prove the following theorem on the probability that a computer

network fails due to overload. .
Theorem 3. Jf { > max | max -L, max l) and conditions (1) are fulfilled, the
1<j<p By 1<i<r B
computer network becomes unreliabie { all computers fail).
At first, using Theorem 1 and Theorem 2, we get that for x > 0

lim P(Q"(nt)_ﬂ"'n"t <x) :fx exp (-g—j) dy, j=1,2,....p0 (@

n—co G Vvn 50

o (Vilnt) - B nt )‘f (_yz) -
,,ILTQP( 5 <x|= hmexp 57 dy, i=12,...,r. 3)
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Let us investigate a computer network which consists of the elements (computers) 'aj
that are indicators of stations X;, j = 1,2,...,p and elements (computers) v; that are
indicators of stations ¥, = L2,...,r o

Denote
X = 1, if the element o; is reliable
771 0, if the clement o is not reliable,
j=12,...,pand
Y= 1, if the element v; is reliable
£ 71 0, if the element v; is not reliable,
i= 1,2,.'; o 2

Note that {X; = 1} = {Qi(nt) < &}, j=1,2,...,pand {Y, = 1} = {Vi(nt) <
v} i=1,2,...,r. Denote the structural function of the system of elements, connected
by scheme 1 from p + r (see, for example, [8]), as follows:

E, X+ Yzl
}==1X)‘+Ei- Y; < 1.

Assume y = J,_Q X430, Y:. Estimate the reliability function of the system (computer
network) using the formula of condmonal probability

L
¢>(X1,X2,....x,,,Y.,Y2,...,Y,,t)={ o

h(XI’XQt- . -’Xpt },19Y2v' . '!Y;'st) = Ed?(X],XQ,-- -txps ‘IIQY2Q - -!},h t) =

] r
P, X, X Y Yoy Y ) =D =PO_ X+ > Yz D)=

j=t i=t
CPU Ay ) =PXi+y 2 ly=1)-Ply=1)+PXi+y21ly=0)-Ply=0)=
PX,20)-Ply=D4+PX; 2 1) -Ply = 0)<P(y—1)+P(X1>l)-
CPy=D+PXi=1)<PE>1)+PXi=1)=
P ’ ? r
PO X+ X2 D+PU=1)< <Y P =1D+Y_PYi2)

=2 i=1 =1 =1

P
<Y PX=1) +ZP(Y~ == Z‘,P(Q,(nt) <k)+ ZP(%(nt) <)
i=1 i=1

j=I =1

Thus,

0< A0, X ..., Xp Y Yoy . Ynt)<ZP(Q;(nt)<k)+EP(V(nf)<'rs) @

=1

Applying Theorem 1, we obtain that

161

T e 8




0< lim P(Qifnt) < ) =

Qf(nf)—ﬁ ‘n-t kf*ﬁf'"'f)_ o (_ﬁ) _

=12 ....p
From (4) it follows that for %; < oo,

}L[{:OP (Q;(nt) < kjr) = 0, f= 1,2, e P . (6)

Similarly as in (5) - (6) we prove that for +; < 00
lim P(Vi(nt) <) =0, i=1,2,...,r. (N
n—00

Consequently, nlggo r(X1, Xe,.... X N, Yo, .. Y, ) = O (see (4), (6) and (7)), which
completes the proof.

Finally, we provide an expr&ssnon for A( X}, Xo, ..., X, N1, Yo, ... X5, £), € > O by prov-
ing the following theorem.

Theorem 4. A(X(, Xy,...,Xp, V1, Y2,..., Y, 1) is equal to exp(— E" yP@Qi(nt) <
k) = Yoicy PVidnt) < ).

Let A, j=1,2,...,pand g;,i = 1,2,...,r be the traffic intensities related to cach
server. Then the probability of stopping this system is equal to & DX g (see, for
example, [13]). But

/\;=MX;=P(X,;=l)=-P(Q,,-(nt)<k;).fml,?,...,p (8)

and - '
=MY,=P(Y;=1=PVinty <), i=12,...,.r. )]
Applymg (8) and (9), we obtain that A(X1, Xs, ..., X,, 1, ¥a,.... Y., 1) is equal to

Z Aj Z G -0, P <k)- Z PWVi(nt) < %)
e /= =l =g i=1 and the proof is complete.

We thus see that Theorem 4 provides an estimate for the probablhty that the computer
network fails due to overload at time 2.
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