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We consider a tandem queueing system consisting of two stations in scrious. The first
station is represented by a single-server queue with renewal input, PH (Phase-type) service
time distribution and waiting room. After service at the first station a customer proceeds
to the second station that is described by a single-server queue without a buffer. In case a
customer completes the service at the first server and meets the second server being busy, it
waits until the second server becomes free and then occupies this server immediately. The
waiting period is accompanied by blocking the first stage server operation. The service time
of a customer by the second server has the PH-type distribution. We derive the ergodicity
condition and calculate the stationary distribution of the system states. The Laplace-Stieltjes
transforms of the distribution of the sojourn time at both the stations as well as the whole
system are derived. The mean values of these sojourn times are calculated.

Keywords: Tandem queue, renewal input, phase-type service time distribution, G/ /M/1-
type Markoy chain.

1. INTRODUCTION

Tandem queueing system can be used for modeling real-life two-node networks as well
as for the validation of general decomposition algorithms in networks. Thus, tandem queue-
ing systems have found much interest in the literature. An extensive survey of early papers
on tandem queues can be seen in [1]. Most of these papers are devoted to exponential
queueing models. Over the last two decades significant results are reached in investigation
of tandem queues with a batch Markovian arrival process that can be considered as general-
ization of stationary Poisson model to the case of correlated bursty traffic. Tandem queues
with Markovian input were considered in (2, 3, 4, 5, 6].

In the present paper we consider the dual tandem queue with blocking, non-Markovian
input and PH type service time distribution at both the single-server stations.
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2. MATHEMATICAL MODEL

We consider G//PH/1 — o/PH/1/0 tandem queue. The first station is represented
by the G/ /PH /1 queue. The inter-arrival times at the first station are independent random

oo
variables with general distribution A(f) and the finite first moment a, = f tdA(t).
0

After service at the first station a customer proceeds to the second station that is repre-
sented by a single-server queue without a buffer. In case the customer completes the service
at the first server and meets the second server being busy, it waits until the second server
becomes free and then occupies this server immediately. The waiting period is accompanied
by blocking the first station server operation.

The service times of a customer at the first and at the second station have PH distribu-
tions.

Service time having P/ distribution with an irreducible representation (8, S) can be
interpreted as a time until the underlying Markov process my,t > 0, with a finite state
space {1,...,M,*} reaches the single absorbing state * conditional the initial state of
this process is selected among the states {1,..., M} according to probabilistic vector 3.
Transition rates of the process m, within the set {1, ..., M} are defined by the sub-generator
S and transition rates into the absorbing state are given by the entries of the column vector
8, = —Se. For more information about PH distributions see [7].

We assume that service process at the rth, r = 1, 2, server has PH, distribution with an
irreducible representation (8,,S"") and is governed by the Markov chain m!”, ¢ > 0, with
the state space {1, ..., M,,*)} where the state ) is an absorbing one.

3. STATIONARY DISTRIBUTION OF EMBEDDED MARKOV
CHAIN

Let 1, denote the time of the nth arrival at the first station and i, is the number of
customers at this station (including the blocked customer, if any) at the epoch £,—0, n > 1.
It is easy to see that the process i,, n > 1, is non-Markovian. In case of GI/PH/1
queue we construct the embedded Markov chain {i,, m,} by introducing the additional
component m, that denotes the phase of service process at the epoch #, + 0, n > 1. In the
queue under consideration such a technique meets with little success due to the blocking
phenomena. Thus, to construct the embedded Markov chain for the considered tandem
queue we introduce into consideration the "generalized" service time at the first station.

The generalized service time of a tagged customer is just the service time at the first
station if the server of the second station is free at the service completion epoch of the
tagged customer at the first server. In opposite case the blocking occurs and the generalized
service time consists of the service time of the tagged customer at the first server and the
time during which the first server is blocked (waits until the second server becomes free).

Analyzing of generalized service time we observe that the duration of this time can
be described by the PH distribution with the state space € consisting of pares, 2 =
{(mV, m®), (m® @) D m®) m® = T M, m® =T, M, (+V,%@)}, and an
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infinitesimal generator

S 8
00 )

where )
SVes® eSy SPek
S= 0 s 0 8o = —Se.
0 0 s

The vector B for this PH has form 8 = (8, ® 85, Om,+m,)-

Remark 1. The phases (states) of generalized service process given by pares from {2 are
rclated to the phases of PH,, PH, service processes as follows:

(i) the phase (m("), m®), m» = T, M,, m®® = 1, My, corresponds to busy servers at
both the stations with PH;, PH, in the phases m'"), m® respectively;

(ii) the phase (m"),+@), m") =T, M, corresponds to busy first sever with PH; in the
phase m‘" and idle sccond server. Analogously, the phase (), m®), m® = 1, M,, takes
place when the first server is idle and the second sever is in the phase m®;

(iii) the absorbing phase (*(!), *?)) corresponds to the casec when both the stations are
empty.

Remark 2. The dimension of the state space (2 is MMy + M; + Ms. The pairs from the
set £ are listed in the lexicographic order. In the following we assume that the pair that
is placed on the mth position in the list will be considered as mth state of the underlying
process of the generalized service time.

Now we are able to construct the embedded Markov chain describing the queue under
consideration. Let m, be the phase of generalized service time at the epoch £, +0, n > 1.
It is easy to see that the process &, = {i,, m,}, n > 1, is an irreducible Markov chain
with the state space {(0,m).m = 1,...,Kp; (i,m),i > O,m = 1,...,K} where K =
MMy + M, + M, and Ko = MM, + M,. In the following we will assume that the states of
the chain £, are numerated in the lexicographic order.

Lemma 1. The transition probability matrix of the chain &,, n > 1, has the following
block structure _

By G 0 0
B A A 0
P=15 a & % ... |

where

Ay = of P(n,t)dA(t), B, = Uf of P(n, x)SodxB"(t — x)dA(t), n = 0,

By =1By, Co = TAq, B*(y) = (B, ® Bye™", B,(1 — B,e%Ye)),

)—( — ( fMng 0 0 )
0 IM| OM] xM; '
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and P(n,t), n > 0, are are defined by ¥ P(n, t)z" = e!S+Sof2)t,

n=0

Corollary 1. The process £,,n > 1, is of the GI /M/1 type Markov chain (see [7]).
Theorem 1. Stationary distribution of the Markov chain §,, n > 1, exists if and only if
the inequality
— o—1p(0)
p=a; b <1
is fulfilled. Here bfg) = —BS~ e is the mean value of generalized service time.

Denote the stationﬂ state probabilities of the chain £, by #(0,m,), i > 0, m = 1, K,
m(i,m,), i >0, m = 1, K. Introduce the notation for row vectors of these probabilities
7o = (n(0, 1), (0, 2), .. ., 7(0, Ko)), m = (x(i, 1), 7(i,2),...,n(i,K)), i > 0.
Theorem 2. The stationary probability vectors m;, i > 0, are calculated as follows:

'ﬂ', = ﬂ]RI_I‘ iz 20

where the matrix R is the minimal non-negative solution of the matrix equation
o0
R=> RIA,
i=0

and the vector (g, m,) is the unique solution of the system

-1

(mp, ™) = (o, m)T, mee+mi(l —R) 'e=1,

where

B, Co
T=\srg Lr4 |
‘ =1

=1 f

4. STATIONARY DISTRIBUTION AT AN ARBITRARY TIME.
SOJOURN TIME DISTRIBUTION

Define the state of the system at an arbitrary time ¢ as (i;, m,;) where i, is the number of
customers at the first station (including the blocked customer, if any); m, is the state of the
PH, service process at the moment { if iy = 0 and m; is the state of the generalized service
time at the moment ¢ if i, > 0.

The process of the system states at an arbitrary time {; = {i;, m;}, t > 0, has state
space {(0,m), m=1,..., My, *®; (i,m),i>1, mc Q).

Enumerate the states of the process ¢; in the lexicographic order.

Let p; be the vector of steady-state probabilities of this process corresponding the value
i of the first component, i > 0.
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Theorem 3. The vectors p,, i > 0, are calculated as follows:

Py = a.“[n’nf% + ) ZR”“‘(I)H],

n=1

p, = o mol Ao+ m ZR““AH], p, = 'mR? Z’R"f}n, i>1,
n=| n=0
= () 3 a2 S@ s{2J A
where @, = [ [ P(n, x)Sodx(Bs, 0)e™-9(1 — At))dt, 32 = ( . ) A
00

_CFP(n. 1(1 —A(2))dt, n > 0.
0

Having the stationary distributions m;, i > 0, p;, i > 0, been calculated we can find
a number of stationary performance measures of the system under consideration. Some of
them are calculated as follows:

» Mean number of customers at the first station at the arrival epoch

L=m( - R) e
Probability that both servers are busy at the arrival epoch

Pb(:“si) =m ([ i R)_]diag {!M1M2' 0M|+Mz}e-
Probability that the server of the first station is busy and the server of the second

station is idle at the arrival epoch

P =m (I — R)"'diag {Om,my Iy, Om; Je.

busy
Probability that the first server is blocked at the arrival epoch

Pyt = (I — R) ™' diag {Opm,m,, Om,» In, te.
Probability that the server of the first station is idle and the server of the second
station is busy at an arbitrary time

Pate = Podiag (I, Oe.
Probability that both the stations are empty at an arbitrary time

Pifilif} - p{)d‘iag {OMzt 1}8

Theorem 4. The Laplace-Stieltjes transform of the stationary distribution of the actual
sojourn time is calculated as follows:
(i) at the first station

v (0) = [mol + 7 (I — Repy(6)) ' pg(0)](61 — S)~'Sq;
(ii) in the whole system
v(f) = v1(0)pa(9)).
Here @ (0)) = B(6] — S)~'Sy and y(0)) = Bo(0 — 3(2})4532) are the Laplace-Stieltjes

transforms of distribution of generalize service time and service time at the second station
respectively.
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Corollary 2. The mean actual sojourn time is calculated as follows:
() at the first station

oy = [mol +mi(/ = R)™'](=8) e+ L)

(ii) in the whole system: 0 =10, + b}m,
where bfg) and bfz) are the mean values of generalize service time and service time at
the second station respectively.

5. CONCLUSION

In this paper, the GI//PH/] — ¢/PH/1/0 tandem queue with blocking is studied. The
condition for the existence of the stationary distribution is derived and the algorithms for
calculating the steady state probabilitics are presented. The Laplace-Stieltjes transform of
the distribution of the actual sojourn time at both stations as well as at the whole system
are derived. Formulas for the mean values of these times are presented. The results of
this paper can be applied to areas such as capacity planning, performance cvaluations, and
optimization of real-life tandem queues and two-node networks.
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