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An approach to solving the problem of finding the suboptimal call admission control
(CAC) in multi-rate queue in which calls of different types require random number of
channels is proposed. The goal is maximization of channel utilization. To solve the latter
problem the methods of Markov decision process (MDP) theory are employed. The results
of numerical experiments are given.
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1. INTRODUCTION

Transmission of different types of calls through the modern multimedia wireless net-
works (MWN) is carried out by shared use of common radio channels. As a rule, polytypic
messages require different quantities of bands during the whole transmission period. Ad-
equate mathematic models for the processing of different types of calls in isolated MWN
cells are multi-speed handling systems (Multi Rate Queues - MRQ). Review of the work in
this field is available in [1-4].

Optimal CAC have to take into consideration the state of the system at the moment of
making the decision. Exact and approximate methods of solution of the problem on the
calculation of optimal CAC in general MRQ models with arbitrary number of call types,
completely taking into account the state of the system, are shown in works [5-7]. A similar
problem for MRQ model with calls of two types was solved in [8], where optimal CAC is
searched in a narrow class of access strategies without preemption. It should be noted that
in [5-8], the methods used were based on the theory of Markov Decision Processes (MDP).
A review of works on application of MDP in problems of CAC calculation in queuing
systems is available in [9, 10].

In practice, especially while reseaching general MRQ models with a relatively large
number of types of calls, the system state isn’t observed completely. Only partial infor-
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mation about the system state is available, namely, only general number of busy (free)
channels is observed. Therefore, the desired CAC shall take the decision based on limited
information. Let us name optimal (in definite meaning) CAC based only on information
about the number of busy (frec) channels as suboptimal.

In this work, a method is proposed for calculation of the suboptimal CAC in general
MRQ model with pure losses. It is based on the theory of state space merging of semi-
Markov systems [11].

2. MODEL AND PROBLEM STATEMENT

Poisson flow of the calls of different types with the summary intencity A is coming to
the N —channel system, N > 1. Any newly received call with o; probability simultancously
requires b; channels, | < b < N,i = 1,2,...,K,atthat oy + o2+ ... +ox = 1. Tt is
supposed that, at the moment of call arrival, the number of the channels, required for its
handling becomes clear. Then, it can be considered that Poisson flows of calls of K type
come fo the of N—channel system, at that intensity of the i—flow is equal to \; = Aoy;
i—type calls require simultaneous b; channels, i = 1,2, ..., K. At that all 5; channels starts
and ends handling of this call at the same time and channel occupancy time is exponentially
distributed variable with parameter y; , i = 1,2, ..., K.

Quality of Service (QoS) parameters of the given MRQ essentially depend on accepted
CAC and using of Complete Sharing (CS) access strategy doesn’t permit optimization upon
sclected quality criteria. Here, the criterion is maximization of channel occupation. Thus.
the problem is defined as calculation of such CAC without preemption, with ability to
maximize channel occupation.

3. A METHOD FOR PROBLEM SOLUTION

Functioning of the given MRQ is described by K—dimensional Markov chain with
states of n = (ny, ..., ng) type, where n; denotes number of the i—calls in the system,
i=1,2,.., K. State space of the model is st in the following way:

S={n:m=01..IN/b)i=12..K n-b<N}, (1)

K
where [x] - integer part of x; b = (by,....be), n-b:= > nb; .
i=1
First of all, the problem of calculation of the optimal CAC is examined. With this goal
let us examine the moments of i—call arrival, assuming that the system at this moment is
in n € E state, in which f(n) > b; , where f(n) :== N — (n - b) denotes the number of free
channels in n € E state, (otherwise when f(n) > b;, as mentioned before, i—call rejected).
In this case, one of two decisions are possible: either (i) i—call is accepted, or (ii) it is
rejected.
Probabilities of making the mentioned decisions are accordingly indicated through
a;'(n) and a; (n). Probabilities defined in this way will be named Controllable Situational
Parameters (CSP). These parameters meet the following conditions:

103



0<af(n) < 1. (2)

af (n)+aj (n) =1, Vi € F(n). (3)

where of (n) + a5 (n) =1, Vie F(n) ={i € Z{ : f(n) > b}, Z} = {1, ..., K}.
Upon use of the given controlling parameters, the elements of generating matrix of the
given MC g(n,n"), n,n' € S, are calculated in the following way:

Al (n), ifn'=n+e
-‘.?(fi. nf) Y Mifhis ff n'=n-— e (4)
0 otherwise,
where ¢; - i—th ort of K —dimention Eucledian space, i = 1,2, ..., K.
Let us denote the stationary probability of state n € S as p(n). Then, average number
of busy channels (N,,) is calculated in the following way:

Ny := Z (n b)p(n)- (5)

nES

Consequently, optimal CAC is found from calculating such an access strategy where

Ny = max. (6)

Restrictions of the problem (6) are conditions (2), (3) as well as the system of equi-
librium equations for stationary probabilities of states. Formulated problem belongs to the
class of nonlinear programming problems, but with the help of substitution of variables it
is possible to solve it with the help of linear programming method. It always has optimal
solution, according to which «; (n) value is either 0, or 1 for cach i € F(n). The last
circumstance allows creation of algorithm, that realizes calculated optimal non-randomized
CAC in the researched system.

The exact approach to the problem solution in calculation of optimal CAC is effective
with little values of N and K, but following their increasing, dimension of S increases
exponentially. Therefore, the problem of calculation of the suboptimal CAC for MRQ that
is practically relevant for the system of large dimension is described below.

Since, according to the assumption, only the number of free (busy) channels are ob-
served, let us research the next splitting of S:

N
Se= WS, S ASisa.nEd (7)
r=0

where S, := {n€S:n-b = r}, that is class of microstates S, combines those n € S
states, in which the general number of busy channels equals r. Hereinafter each S, class is
described as onc merged state (MS), indicated through < r >, r =0,...,,N.

The next merging function is based upon splitting (7):
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Un)=<r>,ifnes, reiy. (8)

where Zy = {0, 1,..,N}.
The elements of generating matrix of merged model g(< r' >, < r" >),r', r" € Zy are
defined in the following way:

Xi Y pln)ai(n), ifr"=r+b,ieZg

nES
g<r'>,<r">) =4 w Y. nip(n), ifr'=r-b,icZ )
HES(J
0 otherwise.

Stationary probability of state < r >, indicated as (< r >), is defined in the following
way:

n(<r>)= Y p(n), reZy. (10)
r‘lESr
Taking into account (5) and (10) we can find out that average number of busy channels
of the system is expressed through stationary distribution of merged model in the following
way:

N

Nuii= Y rm(r). (11)

r=1

The exact valuesg(< r' >, < r" >),7',r" € Zy in formula (9) must be approximated
for creating the system of equilibrium equations for merged model. This shall be done
because these formulae contain unknown stationary distribution of the initial model, as well
controlling solutions af*(n), n € §S,i € F(n) which are not defined for merged models.

Since, for any microstate n € S, upon making a decision about access of arrived i —call,
i € F(n), transition into merged S, ., state takes place, and virtual transition takes place in
case of rejection, then merged models CSP can be defined in the following way:

af (< r>)+o;(<r>) =1, VieF(r). (12)
where o/ (< r >) := P (arrived i—call is accepted / the system is in MS < r >);
a; (< r >) := P (arrived i—call is lost / the system is in MS < r >);
Firy={ieZ:b;<N-r}.
Then, taking into consideration (9) and (12) we can find that as approximate values of
qg(< r" >, < r" >),r',r" € Zy could be used the following correlation estimating them
from above:

AT S), = by i€ 2
d<r > <) =4 ~ | if " =r'-b.i€Z{ K12)
0 otherwise.
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Here [f] denotes maximal number of i —calls in n € S, microstates.

The system of equilibrium equations for merged model is created by taking into con-
sideration correlations (13). Thus the problem of finding of suboptimal CAC in researched
multi-rate system is maximization (11) subject to (12) and equilibrium equations for merged
model. Like the initial problem of calculation of optimal CAC, it also refers to class D
and the suboptimal non-randomised CAC is found as a result of its solution, that is optimal
values o (< r >), where r € Zy, i € F(r) are defined.

The optimal values of CSP af" (n), n € E, i € F(n) are defined after solution of
the problem of finding the optimal CAC (that is optimal solutions for each microstate are
defined), and optimal values of CSP ac"(< r >), r € Zy, i € F(r) are defined after solution
of the problem of finding suboptimal CAC (that is optimal decisions for each merged state
are defined). In connection with this it should be noted that in particular cases, optimal and
suboptimal strategies might be coincide. Along with this, in general cases it shall not be
stated that these strategies will coincide.

In this paper results of appropriate numerical experiments are demonstrated. [t should
be noted, that this method can be used upon other optimality criterias, as well upon having
limitations for probabilities of loss of different types of calls. However having additional
limitations for loss probability of different types of calls will lead to nessecity of realization
of randomized CAC, which will cause methodical difficulties in real systems.
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