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environment is investigated. Efficient algorithm for calculating the stationary distribution
of the system states is proposed.
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1. THE MATHEMATICAL MODEL

We consider the queueing system having N identical servers. The system behavior
depends on the state of the stochastic process (random environment) r;, ¢ > 0, which is
assumed to be an irreducible continuous time Markov chain with the state space {1, ..., R},
R > 2, and the infinitesimal generator Q.

The input flow into the system is the following modification of the BMAP. In this
input flow, the batch arrivals are directed by the process v, { > 0, (the directing process)
with the state space {0, 1,..., W}. Under the fixed state r of the random environment, this
process behaves as an irreducible continuous time Markov chain. Transitions of the chain
v, t > 0, which are accompanied by arrival of k-size batch, are described by the matrices

D, k > 0, r = 1,R, with the generating function D)(2) = Y D,")2%, |2| < 1. The
k=0
matrix D)(1) is an irreducible generator for all » = 1, R. Under the fixed state r of the

random environment, the average intensity A"} (fundamental rate) of the BMAP and the
intensity A" of batch arrivals are defined as

AD = g (DO (2))|,—ie, A =6"(-D)e.

Here the row vector 8" is the solution to the equations 8D (1) = 0, 8% = 1, e
is a column vector of appropriate size consisting of 1’s. The variation coefficient cl) of
intervals between batch arrivals is given by

(c)? =226 (-D{") e - 1,

oar
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while the correlation coefficient cﬁﬁ of intervals between successive batch arrivals 1s calcu-
lated as
Clr] . (Agf)efr)(_ﬂé!})——l(o(r}(I) . D{f)’))(__p{(;’])-le = 1)/’(6‘53)2

cor —

The service process is defined by the modification of the phase (PH)-type service time
distribution. Service time is interpreted as the time until the irreducible continuous time
Markov chain m,, t > 0, with the state space {1,...,M + 1} reaches the absorbing
state M + 1. Under the fixed value r of the random environment, transitions of the chain
my, t > 0, within the state space {1,...,M} are defined by an irreducible sub-generator
S while the intensities of transition into the absorbing state are defined by the vector
Sg} = —Se. At the service beginning epoch, the state of the process m;, ¢ > 0, is chosen
according to the probabilistic row vector 8), r = T, R. It is assumed that the state of the
process m;, t > 0, is not changed at the epoch of the process r;, { > 0, transitions. Just
the exponentially distributed sojourn time of the process m;, ¢ > 0, in the current state is
re-started with a new intensity defined by the sub-generator corresponding to the new state
of the random environment r;, { > 0.

The system under consideration has an infinite waiting space. If an arriving group of
customers sees idle servers a part of the group corresponding to the number of free servers
occupy these servers while the rest of the group joins the queue. If the system has all
servers being busy at a batch arrival epoch, all customer of the group go to the queue.

2. STATIONARY STATE DISTRIBUTION
Let

i, t 2 0, be the number of customers in the system, iy > 0;
n, t > 0, be the state of random environment, r, = 1, R;
v, 1 > 0, be the state of the BMAP directing process, v; = 0, W;
A", t > 0, be the number of servers in phase m at epoch £, B™ e {0.. N}, m=
LM, A" + ...+ 8™ = min{i,, N}, t > 0.

Then the behaviour of the system under consideration can be described in terms of the
multi-dimensional irreducible continuous-time Markov chain

&I’z {it,ﬁ,b’t,h}.”,...,&EM}}, t ZO (1)

Denote p(i,r,v, hy,...,hy) = llim Pliy =i,n=7 =, h,(” = B wiss hﬁ"“ =
=00

hu},i>0,n=TRv=0,W,A" ¢ {0...N},m=T,M, hAD+.. +r™ = min{i, N}.
Enumerate the states of the chain &, ¢ > 0, in direct lexicographic order of components
i,r,v and then in reverse lexicographic order of components A" .. ;M)
Compose the row vectors p, of stationary-state probabilities p(i, r,v, Ay, ..., Ay), i > 0,
according to the defined order and the row vector p = (p,,p,,P,,...). The vector p
satisfies the following system of linear algebraic equations:

A = 0,
{Ze=l @)
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where A is the infinitesimal generator of the process &, t > 0.
To determine the transition rates between the states of the process £, ¢t > 0, we have
to analyze its transition behaviour. Suppose that at the moment # the process &, ¢ > 0, is

in the state z,

= (f,r,y,hi‘...|

hu). Consider all possible events which can occur in an

interval [f, ¢ + d[ of infinitesimally small length § with probability greater than o(§). They

are:

I) Transition of the BMAP directing process v, > 0, from state v to state v/ w:th

generating the k-size batch of customers.

2) Transition of the BMAP directing process from state v to state / without generating

customers.

3) Transition of the RE directing process r;, r; = _l:ﬁ, from state r to state r'.
4) A phase shift of one server from m to m' without the service completion.

5) A service completion by a server being in phase m.

The intensities of the corresponding transitions and the resulting system states are given

in Table 1. By the symbol e; we define the vector of proper size filled with zeroes except

the /th element which is equal to one, vector & = (A", ..,

AM)

Table I possible system transitions

Event
1

h B W o

State
(i+k,r,v',h+eh
(i+k oV h+e,+

(i + k&, r,/, h)
(i,r, v/, h)

(i,r',v, h)

(i, r, v/, R+ €n+emw)
(i—1,r,v.h—e,)

(i—=l,r,v,h—e,+ey)

(i—1,r,v,h)

L +E;.)

.+ B;\,__‘)

Transition ratc
(D)
(D7) "’.
D‘”)wf
(DY)
()
hmSE,

A (S,
A (S5 Yt

M
Y K88
m=1

ﬁ(f}
ﬁl-"}

Iny—i

Condition
i<N,1<k<N-i
i<N,E>N-I
i>N,k>1
i>Lk>1
i>1L,k>1
m#m', hey > 1
i<N, he, > 1
i>N,he, > 1, m#m

i>N

Our aim is to calculate the stationary state distribution of the described queueing model.
For the use in the sequel, let us introduce the following notation:

e e, (0,) is a column (row) vector of size n, consisting of 1’s (0’s). Suffix may be
omitted if the dimension of the vector is clear from context;
e / (0O) is an identity (zero) matrix of appropriate dimension (when needed the dimen-
sion of this matrix is identified with a suffix);
e diag {a;, | = 1,L} is a diagonal matrix with diagonal entries or blocks a;;
e ® and @ are symbols of the Kronecker product and sum of matrices;

.gm=(° 0

e L(n) =

SUI' S(r}
(n+M I)

=0,N;

) ,

LR;
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o W=1W+1I;

. D};ﬂ = dz'ag{Dé’) @A’L[n), r=1,R } =0,N, k> 0;
o Pin=diag{ly @ Poa(B)), r=11R}, kn=T,N,
o A, = diag{ly ® A(n,S"), r—_ﬁ} n=1,N,

e L, =diag{ly ® Ly_,(N,S8"), r =1,R}, n:-_qﬁ;

o Qy = diag{ly ® QN, 8T8, r =T, R};
o CW=Q® Iy ®lm+DP + A, n=0.N.

Lemma. Infinitesimal generator A of the Markov chain &, t > 0, has the following
block structure:
Ao Aoy Aoz Aos
Ap A A A ...
A=| O Ay Ays Az ... (3)
0 0 A3_2 A3_3 ¢

where the non-zero blocks A;; are computed by

. i=TH,
Aii- :{ Q. #5N,

4 _{ O+, i=0,N—T,
) Opingins1ys i 2N,

& { DR Py i=ON=T, j21,
i i

i i>N,j>N+1.

Here A;, i = 0,N, are the diagonal matrices that guarantee Ae = 0, P;-.f-(ﬁ(”) =
P(B™P(B)...P_1(B"),0<i<j<N, r=T,R. The detailed description of the
matrices P (8"), A(i,S), Ly_(N,87), r = T, R, and the algorithms for their calcula-
tion can be found in [1, 2].

To solve system (2) with the matrix A defined by (3), we use the effective stable
procedure [3] based on the special structure of the matrix A (it is upper block Hessenberg)
and probabilistic meaning of the unknown vector p.

This procedure is given by the following statement.

Theorem 1. The stationary probability vectors p;, i > 0, are calculated as follows:

pi=pf1 12 1,
where the matrices F; are calculated recurrently:

=1
Fr=(Aos+ Y FANAN 121,

=1
Aig = Aiy+ Ay G0N} L G vy 1,0 2 0,
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the matrix G is calculated from the eqﬁ&rion

o
G=(-) AvyinvuG ™) Avpin
-1

the matrices G;,i =0, N — 1, sare calculated from the backward recursion:

(s o]
Gi = (=Aip1i01 — Z A1 [GPH0I-NY * Gpin{Ng}=1"
I=i42

'Gmin{N‘i}——Q EETE Gf+|)-1Af+I‘i!i . N - ].,N - 2v e 0’
the vector p, is calculated as the unique solution to the following system of linear algebraic
equations:

oo
PoAoo =0, Pg(z Fe+e)=1.
1=0

REFERENCES

. Ramaswami V., Lucantoni D. Algorithm for the multi-server queue with phase-type
service // Communications in Statistics-Stochastic Models. 1985. V. 1(3). P. 393-417.

2. Ramaswami V. Independent Markov process in parallel // Communications in Statistics-
Stochastic Models. 1985. V. 1(3). P. 419-432.

3. Klimenok V. I, Dudin A. N. Multi-dimensional asymptotically quasi-Toeplitz Markov
chains and their application in queueing theory // Queucing Systems. 2006. P. 245-259.

4. Klimenok V. 1., Khramova V. V., Babitsky A., Dudin A. N. Steady state analysis of
the BMAP|PH|N queue in a random environment // Proceedings of 15th International
Conference on Telecommunications - ICT-2008. 2008. P. 91-99.

101



