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[n the present paper we consider a queueing system with heterogencous exponential
servers. The service policy is a threshold-based control one, i.e. the fastest server must be
switched on whenever it is free and at least one customer is in the system, while the slower
ones must be activated when the number of customers in a queue reaches some threshold
level specified for a certain server.

We investigate algorithmically the busy period distribution by deriving expressions for
the Laplace transforms and perform recursive calculation of the corresponding moments
and the number of customers served during busy period. The optimal threshoid levels for
the mean busy period minimization are calcuiated.
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1. INTRODUCTION

The queueing systems with several heterogeneous servers take into account many practi-
cal aspects in modelling real systems, c.g. network nodes with servers supplied by different
type of processors as a consequence of system updates, nodes in telecommunication network
with links of different capacities, nodes in wireless systems serving different mobile users,
etc. In this paper we consider such a system with one common queue and threshold-based
service policy that can be described as follows. The fastest free server must be activated
whenever at least one customer is in the queue and other servers must be switched on only
if the queue length reaches some threshold levels defined for each server.

Threshold service policies have been applied for multiserver systems by many authors.
As it was shown in [3] the optimal policy that minimizes the mean number of customers in
the system with two heterogeneous servers and one common queue is of threshold type. This
result was generalized in [4], where some convexity properties of the dynamic-programming
value function were proved. In [2] the waiting time and sojourn time distributions of a
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three-server heterogeneous system under threshold policy are derived in form of Laplace
transforms.

In the paper we provide algorithmic analysis of a length of busy period that seems to
be a very important first-passage characteristic of any queueing model from the service
provider’s point of view. We obtain Laplace transforms and z-transforms assigning the
length of busy period and the number of customers served and develop a recursive scheme
for the computation of arbitrary moments.

2. MATHEMATICAL MODEL

We deal with a multi-server model consisting of A heterogeneous servers which serve
customers according (o the threshold control policy defined by the succession of the thresh-
old levels, 1 = ¢gf < g5 < -+ < g < oo. Denote by Q(t), Di(t), £ = 1,2,...,K
the number of customers in the queue and the states of servers. The random process
{X (1)} = {Q().Dy(t),....Dx(t)}i>0 is a continuous-time Markov chain with state space
defined as E = {x = (q,d,, ..., dy)|

d; = {0, 1}, 1<j<K,q=0

d;=1,d; = {0, 1}, 1g:jgk,kﬂssgf{,qggng;+l,lgkgf(—1}
and with threshold dependent infinitesimal matrix A = [a;]. The details of the model can
be found in [1]. To limit the size of the formulas we only present the case of three servers,
but the given method can be applied to any number of servers. The method can also be
extended to some other models, e.g. where the inter-arrival and service times have phase
type distribution.

3. BUSY PERIOD ANALYSIS

The busy period of the system is a duration L that starts by arrival of a new customer
to the empty queue and ends when the system visits zero state after a service completion.
First the following notations are defined:

L.— the first-passage time to zero level given the initial state is x € E,
@, (1)— density distribution function of the conditional first-passage time,
@.(s) = E[e~] = [* e @, (t)dt, Re[s] > 0— corresponding Laplace transform.

Because of the markovity of the process {X(¢)}, the residual first-passage time in state
x consists of the time the system spend in state x until the next transition with density
Ace ! plus the residual time in s state y after possible transition from the state x,
which take place with probability 3= 22 Thys from the low of total probability for Laplace
transforms we get

Pals) = Z SPuls) 2 € E. (1)
yix

Now we partition the above Laplace transforms and define the following column-vectors:
@1(5) = (Z10.1.00)(5), P0.0.1,0)(5), Prooo1y(s)), (2)
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?5(8) = (P11,1,0,0)(8)s @(0.1,1,00(5), Po.1,0,1)(8), Proo.1.1y(8))’,

@,(s) =
(Bi—1,1.00(8), Pli-2,11.00(8), Pri-2.1.01(8)s Pii-3.1,1.00(8)), 3<i< g
(Pi—2.1,1.0(8)s Pi2,1,0.1)(8), Pr=3.1.1,1)(8)), i=gq;+1
(Pi-211.0(8), ie-3,1,1.1)(8))" Bp+H2<i<g+l
Pi-3.1,1,1)(8), i=gi+2

@(s) = (@,(s), @5(s), .. ., (“bq;+2(5))f_

Theorem 1. The vector ¢(s) of the Laplace transforms @.(s), 1 < i < g3 + 2 satisfy
the following block tridiagonal system

@(s) = A (s)F(s), (3)

1"1;_{5) =& — Si2(q5+q§]+3= F"(S) = —(AB, 0: ey 0- ;\E(s)g'aq3.+2(s))’,
£(s) = fiiidod. {;H‘M)Lum. Matrix @ is of the form

(B 6, 0 0 0 0 0 0 0 0\
Ai =B G 0 0 0 O 0 0 0
0 A B C O ©0 0 0 0 D g
. - 1- - 2
0 0 Ay —B, € 0 0 0 0 !

a=| 0 6 0l =Ry e 'S 0 )

0 0 0 0 A -By C; O 0
0 6 0 © 0 A B G 0 S @ —a;
0 0 0 0. 0. .06 ..06 #A =B G /

\ 0 0 0 6 0 0 0 0 A —-(+M) /)

where M = 1) + po + ps. The entries A; represent the departures with elements depending
on the servers which are active:

iy e 0 0 we 0 0 0
' 0 ng pp 00
A = ) ) A = .”'2 vu'l : A &=
’ ( ﬁ; ) s 0o 2Tl 0 om0
0 p3 po 0 p3 p2 m
By gy, O B wy+ps 0 0 g+ o 0
Az=1| g 0 py O ‘A4=( . u)’A5=( , +;)’
0 pz po 3 My oy H3 AT )

As=(ms m+p).
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The entries C; represent the arrivals with elements depending on whether the queue lengths
are above or below threshold:

(=3 = 3 ¥
oo»o
OO
>o oo

iy

i
=N
OO0
>»o oo

X000
C={X00),C,={0 X0 0|, C=
00 X0

A0
C=| 0 A ,05=(3 2),cs=(§).
0 A
The diagonal blocks B; represent the total outcome intensities of the certain state: By =
diag {A + g1, A+ g, A+ pa}, By =diag {A + g0, A + ey + po, A+ py + g3, A+ pe + 3l

By = diag {A +p1, A + g1+ pg, A4 py + pa, A+ M), By = diag {A + gy + po, A+ M},
By = diag { X + 0y + pg, A+ iy 4 3, A+ M}

Proof. The inverse of the matrix A;(s) is well defined because its diagonal elements dom-
inate in each column for any s, Re(s] > 0. The expression of the recurrent relations (1) in
matrix form leads to the equality (3). O

Hence for the Laplace transform $(s) of the unconditional density function we get

®(s) = Pe.1.00(s) = € (2(q; + g3) + 3)@(s). 4)

The limit property of the Laplace transform allows us to get the value of the function ¢ (f)
at point £ = 0:

lim s @(s) = {u" if (g, d'la do,d3) =(0,1,0,0),
Smoe 0, otherwise.

Therefore we have ©{0) = u,.

Now we obtain the n-th moments of L, which we denote by L,(n) = E[L?]. According
to the introduced partition of the Laplace transforms we compose the following macro
vectors

L(n) = (Li(n), Ly(n), ..., Lyg42(n))". ()

Theorem 2. The vectors of the n-th moments Li(n), 1 < i < g} +2, n > 0 satisfy the
Jollowing recurrent block tridiagonal system

L(n)=-n®'Lin~ 1)+ & 'R(n), n > 1 (6)
L(0) = e(2(q; + ¢3) + 3),

R(n)=AYm o ( ) Ly 2(m)E(n — m)ess rane3 En) = (1" 5EG)|

Proof. Applymg Leibnitz’s fonnula to derive the n-th derivative of (3),' we find that

AL(s) 4 £ p(s) - nagm-tp(s) r(s) Since for the Laplace transform the relations L(n)
(—1)r£ dsn(p(s)| o R(n) = (- l)’l £27(s)|,_, hold and taking into account that A, (0) =
we acquire the expression (6). D
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4. THE NUMBER OF CUSTOMERS SERVED
In this section we study the number of customers N served during a busy period.
Define; N,— r.v. of the number of customers served given initial state x, 1,{k) = P[N, =
k]— probability density function of N,, ¥,{(2) = E[2™] = T° ¢.(k)24, 12} < 1-
comesponding 2- transform, $(2) = (,(2), 9,(2), . ... P 42(2))' — macro-vector of z-
transforms N(n) = (N;(n), Nz(n), ..., Ny 42(n))'— macro-vector of the factorial moments
Nin)=E[N...(N —n+1)].
For the Markov process {X(f)} using the low of total probability we get the relations
for z-transforms ¢ (2) in form
T () = 2O
Py(2) = Py

Be@+ Y 2. 0
yAey
where the first term represents the service completion and the second ore corresponds to
all other possible transitions that do not change the event under consideration.
Theorem 3. The vectors of z-transforms (), 1| < i < q} + 2 satisfy the following
block tridiagonal system

P(2) = A5 (2)g(2), (8)
M(e) = @ — AQR), §(2) = —(2d), ..., \{(@)Dy,0(2))!, L(2) = MU
A’
[0 0 0 0 0 0 00 0 ...0)
AL 0 0 6 0 0 000 ..0]{
0 A 0 0 0 0 0 00 ... 0 g3
0 0 4 0 0 00 0 ... 0] 1
M=(-2| 0 6 0 A, 0 0 0 0 ... 0
_' 0 0004 000 ..0f | .,
0 6 0 0 0 A 0 0 ...0 G-
0 0 0 0 0 06 04A4 0 0] °
\ 0 0 6 0 0 0 0 0 A 0)

Theorem 4. The vectors of n-th factorial moments N(n), 1 < i < ¢} + 2 satisfy the
Yllowing block tridiagonal recurrent system

- N(n) = -n®~'AON(n — 1) - $7'Qn),n 2 1, N(©) = e2q +¢3)+3), (9

¥n) = ,140e1 + A 307 ( ; ) Ny ao(m)¥(n — m), ¥(n) = £:(2)) .

For unconditional z-transform and factorial moment of the #-th order we get, respec- .
gely o

b D(2) = Pi0100(2) = €1(2(g5 + ¢3) + 3)(2), (10)
# N(n) = Noi00(n) = €{(2(g; +43) + 3)N(n), n > 0. (11}
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5. NUMERICAL EXAMPLES

In Figure | we apply the numerical inversion algorithms to obtain the distribution func-
tions ® (¢} and ¥ (%) under threshold policy that minimizes the mean length of busy period,
figures labelled by (a) and (b), respectively. In our examples we fix the service rates
1 = L5, g = 0.5 and p3 = 0.3, As expected we observe that when A increases the
distribution functions reveal a heavier tail, moreover the optimal threshold levels decreases,

see Table 1.
(a) ®)
1 7 - T
/r rﬁ_ﬂﬁwﬂﬂm i r—r— - ':-:_?""-"—' o ————
0.8 ﬁ oy g e i — . f ==
C P c.u = e e
i ]
_ 0.6 W B 4.6 ™ 1-J -
3 5 3
™ “® o
0.4 0.4 -
0.2 , —- 0.2 e
0} -
Ll 2 a 6 8 10 o s 10 15 70
kit t: K

Fig. 1. The distributions ®{t) and P{&) versus A

Table | Moments of L and T with correspending eptimal thresholds

LA EL) [ Vi [ BV | VIN] 4545
- [03]07142] 05831 [1.6714] 0.0875 [ 4 |11
0.9 [ 1.5091 | 63237 [2.5098 107093 {3 [ 6
1.2 | 2.2004 | 16.1579 [3.6470 | 343611 [ 2 | 5
1.8 ] 6.3645 | 202.4630 | 8.0992 | 267.6810 | 2 | 4
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