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Queue length and server state stationary distributions in the queueing system under
consideration are studied in previous papers of the author. Here, on the basis of these
distributions, formulas for the distribution function, the mean value and the variance of
the idle channel period are obtained. The numerical values computed according to these
formulas are compared with the simulated results and some dependences of these values on
the system parameters arc established.
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1. INTRODUCTION

The definitions of idle and busy channel periods in a single-server queueing system with
repeated calls differ from those in a systemn with a queue ([1], [2]). Although in the present
paper we consider a system with repetitions, these definitions are treated as in a system
with a queue: a busy period is the time from a start of a service till the moment the server
for the first time is free again, and the idle period is the time from the end of a service till
the beginning of the succeeding service. This means that the busy periods coincide with the
service times and only the investigation of the idle period is of interest.

We study a single-line (channel, server) queueing system with N customers (sub-
scribers). These customers are identified as sources of primary orders (calis, demands).
Each such source produces a Poisson process of primary (initial) calls with intensity A, If
the server is free (idle) at the instant of a primary call arrival it begins service immediately
and after service completion becomes again a source of primary calls. Otherwise, if the
channel is busy, it forms a source of repeated calls. Such a source produces a Poisson
process of repeated (secondary) calls with intensity u. If an incoming repeated call finds
a free line, it operates in the same way as the primary calls: begins service and after its
completion forms a source of primary calls. Otherwise, if the line is engaged at the moment
of a repeated call arrival, the system state does not change.

The service time 1s a random variable £ with distribution function G(x) both for primary
and repeated calls. The intervals between repeated trials, as well as between primary ones
and the service times, are assumed to be mutually independent. Let
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n(x)A =P{&c (x,x+A)/> x}, (M

i.e. v~!is the mean of the service time € and 7(x) is the service rate at instant x after start
of a service,
__ &)
1 —Gx)
By C(t) we denote the number of busy channels at moment #, by 2(¢) - the time from
the last service starting moment before ¢ (in case C(f) = 1) and by R(f) - the number
of repeated calls sources at moment / (a sort of queue). For the sake of simplicity these
sources will be called secondary subscribers. Formulas for the stationary distributions of
the channel state, the queue length and their probabiiity characteristics have been derived
in previous papers of the author. Using these distributions, expressions for the distribution
function, the mean value and the variance of the idle period are obtained in the present
article. The mean values, computed according 1o these expressions are compared with
simulated results. Some results, clarifying the dependence of the idle period mean on the
parameters of the system, are numerically established.

n{x) = (2)

2. JOINT DISTRIBUTION OF THE CHANNEL STATE AND
THE QUEUE LENGTH

The joint distribution of C(¢), R(t) and 2({) in steady state
Pia(x)dx = fl_i}ryh Pialx, f)dx = (3)

= f[_i}r?%P{C(r) =1, RB(t) =n,x < 2(t) < x +dx},

as well as the stationary joint distribution of C(f) and R(f)
an = fl_l_}lgpm(t) = (4)
= t]imP {CHy=i R{t)=n}, i=01, n=0,1,,..N

are studied in [3]. Considering the possible transitions of the system for a short time interval
Atf, we get a system of partial differential equations for the distributions py,(x, £), pi.(f),
i =0,1, n=201,..,N. By means of Laplace - Sticltjes transforms of this system’s
equations and taking limit as { — oo we get a system of ordinary differential equations
for the stationary distributions (3)-(4). Solving the system, we obtain formulas for these
distributions, thus proving their existence. The following theorem is proved in [3]:

Theorem 1, The stationary distributions (3)-(4), always exist and are given by the for-
mulas
pin(x) = pv = poy =0,

o : N '—k—l s g Yk
T S 1 S (N—k—1)Ax 5
Piale) = (=¥ G(x))gzoﬁ( E e et O

40



EN—k—1

LI o e
pin = (= 1) *Z( " ) 2
k=0 !1..

it s~ (N—k—1
pon = (=1)V"" a1 ( g )gokC, n="0,1,..N=1, (6)
k=0

Furthermore, for the stationary distribution of the channel state

P=limP{C(t)=i,}, i=0,1 7

and the secondary subscribers mean value ER we have

Pi=vi'py.C, Py=1-h, (8)
ER = I:(N o l)y_le—l 1 (l _gl) (,{L =3 A) ‘PN—2j| C: (9)
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an = (N —n)A+nu, (12)
gi=gnA), n=0,1,...N~1 (13)
and A,, B, and C, are defined by the recurrent velations
Ay =By =G =0, (14)
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3. IDLE CHANNEL PERIOD

Suppose at moment ¢ an idle channel period starts and let us denote its length by
¢(#). For the stationary distribution, the mean value and the variance of ((¢) the following
theorem holds:

Theorem 2. The stationary distribution F;(x), the mean value EC and the variance D(
of the idle period ((t) are given by the expressions

N—1 , ;
Fe(x) = vl—Pl Z(—I)N'“" (Fvg-0iaug } > (N ;f; 1

n=0 &=0

)%C. (18)
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where the stationary channel state distribution Py, P, (7) as well as the quantities iy,
En—k-1, G, and C are given in Theorem 1.

Proof. The distribution F(x) is equal to
Fe(x) = !l_i)m P{¢(t) < x/C(t) =0, C(t—-0) = 1}. 21)
We express the probabilities participating here by the stationary distribution 3

tlﬁing{g’(t)(x. Cit)=0,C(t-0)=1}= (22)
N—1 -

- Z (1 — e—(;v—n)kx—nﬁx)/ pialw)n(u)du,
n=0 0

N=1 seo
lim P{C(£) =0, C(t—0)=1} =" f pral)n(u)du. (23)
=00 —tdy

Using formulas (5) and (2) we substitute in (22), (23) and get consecutively:
- i (N =k—1
f pia(wn(uydu = (-1)V" ‘Z( )%C.
0 0 n—=k

lim P{¢(t) <x, C(t) =0, C(t-0) =1} =

Z( l)h—ﬂ—-l Z (‘N k- )(ﬁkc (1 — e-—(N—.u}Ax-nnx) ‘

n=0
lim P{C(t =0, C(t-0)=1) =

"E( ”N_H-IZ(N k;l) @rC = pn-1C.

n=0
From here, taking into account (21) and (8) we obtain formula (18) and using this formula
we get

E(:= -/oc xng(x) =

N—-n—1| N = 1
) Z( v Z( )(ka(N-n)A+nﬂ'

The comparison of thc last equation with the expressions (12) and (6) for the distribution
Pon gives 19. The proof of (20) is similar. )
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4. SIMULATED RESULTS

Queue length simulations in the case of exponentially distributed service time with mean
v~ are presented in [4]. They are performed using the software system "MATLAB"[S].
As in this case the quantity 7(x)(1) is equal to v and does not depend on x, the system
state at time £ is fully determined by the number R(f) of repeated subscribers, the channel
state C(f) and some initial state (R(%),C(fy)). The simulation follows the short time A¢
changes of the process (R(f), C(Z)), with the assumption that (C(%) = 0, R({;) = ER),
where ER is the stationary mean value of the secondary subscribers, calculated according
to formulas (9), (10-17) in the case of exponentially distributed service time with parameter

V.

800 - ] 20
g 600 c 15
g g
o
B amo 8 10
& g
2 o
= 00 =i
0 RS 0
0 1 2 3 4 5 0 1 2 3 4 5
A x 107 K x 107
=08, v=1, N=25 =005, v=1, N=25
151 —— 200
B e 150
P W é
B B 100
@ ]
o o
& 05 2
= 2 50
| t
0 — 0! :
0 1 2 3 g 50 100 180
v N
1=0.024, p=0.8, N=25 A=0.001, u=0 8, v=1
Fig. 1

In order to evaluate the channel state, we consider the alternating sequence of idle and
service periods of the channel. Denote by K, and L, the length (the number of simulation
steps) of the /" idle period and of the /% service respectively, [ = 1,2, .. ; by / and J - the
number of these periods during the simulation, / = J or / = J + 1.and finally by n - the
number of simulation steps,

1 i
ZK{ + ZL; =1.
=l =1

Then the obtained empirical mean values of the idle and service periods, multiplied by
the single step length Af should be close to the real means of these distributions.
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Each of the graphs on Figure 1 represents the values of the idle period mean, computed
according to formula (19) (in the case of exponentially distributed service time), and the
empirical means obtained via simulations. This is done for 100 values of the varying
parameter with 10000 steps for each simulation. We can sece that the observed values
are near to the theoretical ones for a wide range of parameters values. Moreover, the
graphs show specific properties of the idle period mean as a function of any particular
parameter, which ones should be checked for other distributions of the service time or
proved theorctically.
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