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In this work, we consider an M/G/1 retrial queue where the customer service is subject to
interruptions and the customer, whose service is interrupted, has to either leave the system
forever or join the retrial group. We first present a recursive procedure to calculate the
steady-state joint distribution of the server state and the number of customers in the orbit.
Then, for the same distribution, we obtain the closed form expressions when the service
times follow an exponential law.
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1. INTRODUCTION

Retrial queues with unreliable servers are of great importance because they occur in
many practical situations. We distinguish between the failure/repair behaviour of the server
when it 1s idle (passive breakdown) and when it is busy (active breakdown). In the latter
case, the customer whose service is interrupted can leave the service area or stay at the
server until the repair is done and then restart his service. Under the first assumption, the
customer in question can leave the system forever or join the retrial group. Under the second
assumption, we can handle the following situations: pre-emptive resume - the service starts
from where it was interrupted; pre-emptive repeat identical — the service starts from scratch
with the same service time demanded again; pre-emptive repeat different — the service starts
all over again with a resampled service requirement. These models were discussed in the
literature(1, 3, 4, 5, 7].

In this work, we consider an M/G/1 retrial queue where the customer service is subject
to interruptions and the customer, whase service is interrupted, has to cither leave the system
forever or join the orbit. We first present a recursive procedure to find the steady-state joint
distribution of the server state and the number of customers in the orbit. Then, for the
same distribution, we obtain the closed form expressions when the service times follow an
exponential law.

2. MODEL DESCRIPTION

We consider a single server queueing system with no waiting space. Primary customers
arrive at the service area according to a Poisson process with rate A > 0 . An arriving
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customer receives immediate service if the server is able to start a service time; otherwise
he leaves the service area to join the orbit. Successive inter-retrial times of any orbiting
customer follow an exponential distribution with parameter # > 0 . Thus, we have a
classical retrial discipline with intensity j 6 , where j is the number of customers in the
orbit. The service times follow a gencral distribution with distribution function B (x) having
finite mean 1/ and Laplace-Stieltjes transform B (s). We assume that the customer service
can be interrupted by active breakdowns but the server is restarted instantaneously. The
customer whose service time is interrupted has to either leave the system forever or join
the orbit. Therefore, we have two types of breakdown governed by exponential laws: the
first - with rate a;(customer leaves the system); the second - with rate ag(customer goes
to the orbit). Finally, we admit the hypothesis of mutual independence between all random
variables defined above.

The state of the system at time ¢ can be described by means of the process
{C(t),N,(t),£(f),t > 0} , where C (¢) is 0 or 1 depending on whether the server is idle
or busy, N, (¢) is the number of customers in the orbit. If C (f) = 1, £(¢) represents the
clapsed service time of the customer being served at time { .

3. STEADY-STATE JOINT DISTRIBUTION OF THE SERVER
STATE AND THE NUMBER OF CUSTOMERS IN THE ORBIT

We note that our model can be viewed as a special case of the model studied in [2] by
using the tools of Markov regenerative processes [6]. Hence, the considered system is in
steady state if
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Moreover, we adapt the presented recursive procedure to obtain the steady-state distri-
bution p;; = ‘Iirgjf?J (C{)=i,N,(1)=/)(i=0,1andj=0,1,2,...) for our model.

Now, we suppose that B (x) = 1— e ™ u > 0,¢ > 0. Therefore, we have a Markov
process

with state space S = {0, 1} x N .
The condition (1) becomes
A
E < 1.
g o)+ [

Theorem 1. Let p < 1, The steady-state distribution of the process (2) is defined by
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