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The standard models of classical queueing theory are systems operating in continuous
time. But in practice there are many systems which shows an inherent generic slotted time
scale (for example time-shared computing systems) and demands a study of discrete time
systems. One of the advantages of dealing with discrete-time models is that they have been
found more appropriate that their continuous-time counterpart for modelling computer and
telecommunication systems.
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1. INTRODUCTION

The study of discrete-time queues was initiated by Meisling [1], Birdsall et al. [2], and
also by Powell et al. [3]. One of the most outstanding works of the queucing theory has
been recently carried out by Yang and Li [4], who extended the retrial queues to the discrete
time systems.

Retrial queues are queueing systems which arise naturally in many telecommunication
and computer systems and are characterized by the fact that a customer who finds the server
busy upon arrival must leave the service area and joins a retrial group (which will be called
orbit) in order to reinitiate his request after some random time.

There is a wide literature on retrial queues and for a good survey of the results and
fundamental methods of retrial queues, we refer for example [5] and [6].

Most of the investigations in queucing systems consider the server as reliable, in this
paper we adopt the more realistic approach of unreliable server, that is, we admit the possi-
bility that the server is subjected to breakdowns. In many practical situations, the server is
unreliable from time to time (hardware breakdowns, preventive maintenance, spare replace-
ment, ...). This work is an attempt to extend the queueing theory on server breakdowns
to the discrete-time retrial queues. We study a discrete-time Geo/G/1 retrial queue with
starting failures and general retrial times. With this paper we generalize the previous work
mentioned in discrete-time retrial queue with unreliable server due to starting failures be-
cause we consider general service and general retrial times. Besides, we introduce the
feedback phenomenon in our system. Although the feedback phenomenon, introduced by
Takacs [7], occurs in many practical situations see [8]. Feedback is present for example in
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telecommunication systems where the messages with errors are send again, Also, feedback
can be introduced as a mechanism to program the service of customers when the its service
is divided in an aleatory number of stages.

2. THE MATHEMATICAL MODEL

We consider a discrete-time queueing system where customers arrive at the system
according to a geometric arrival process with probability p. An arriving customer who
finds the server busy or down joins a group of blocked customers called orbit with a FCFS
discipline, that is, only the customer at the head of the orbit is allowed for access to the
server. An arriving customer (external o repeated) who finds the server idle must turn on the
service station. If the server is started successfully (with probability »), the customer gets
service immediately, otherwise, if the server is started unsuccessfully (with a probability
7 = | — v) the repair for the server begins immediately and the customer must join the
orbit. Successive interretrial times follow a general distribution {a;}?°, with gencrating
function A(x) = Y77, a; x'. Service and repair times are governed by arbitrary distributions
{s1.i}2), {s2.}2, with generating functions S;(x) = >_.°, s, %', Sa(x) =372, 52, %" and
the n-th factorial moments f; , and 3y, respectively.

After service completion, the customer decides either to join the retrial group again for
another service with probability 6 or leaves the system with complementary probability 6.

It is assumed that interarrival times, service times and repair times arc mutually inde-
pendent. We will denote p; = pB;1, i = 1,2. In order to avoid trivial cases, 1t is also
supposed 0 <p<l, O<wv<l, 0<8< 1.

3. THE MARKOV CHAIN
At time m* (the instant immediately after time slot m), the system can be described by
the process
Ym o (Cm'fﬂ.mrfhmn 52.m'Nm)

where C,, denotes the state of the server 0, 1 or 2 according to whether the server is free,
busy or down and N, the number of unsatisfied customers. If C,, =0 and N,, > 0, &
represents the remaining retrial time. If C,, = 1, £, ,, corresponds to the remaining service
time of the customer currently being served and if C,, = 2, £, is the remaining repair time.

It can be shown that {Y,,, m € N} is the Markov chain of our queueing system, whose
states space is

{(0,0); (0,i,k) : i> L,k> 1, (1,i,R): i> 1,k>0; (2,i,k): i> 1,k > 1},
Our goal is to find the stationary distribution

oo = nlergoP[Cm =0, N,=0]

Moie = mII_}I‘goP[Cm=0‘ fom =1, Np=kly 21, ®#>1
Mike = mli_)rgoP[Cm=l.§|‘m'——i.Nm=k];izl,kZO
Toik. o= i PlCn=2, &u =1, Nu=k) i1y k3l
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of the Markov chain {¥,, m € N}, |
The Kolmogorov cquations for the stationary distribution of the system are

Tog = Pmoo+08Pmiip (1)
Mok = Poiipe+Opaimp-1+0paim 0 +PaiTipi> 1,21 (2)

o
Tk = Ooepvsiimog+pvsimoe+t + (1 — Jﬂ.k)pusl,izﬁo,j,k +
=1

+ (=8 0pvsyimip+ Opvsy+0pagysy)m e+
+ Opagvsiimiie + (1= O0) PTLis a1 + P Tiv1 e+
+ (1 = doe)ovs i maup+DpaoVsimoper, i > 1,820 (3)

o
Toun = OapPsmoo+ (L= i) pPsas Y Tojaot + VS Touk+
fisl
+ (1=614)0poso;m o+ Bpusy;+0pagvsy)m s+
+ OpaoUsoimiie+ (1 —01.) PS8 Mo p—1 + DAV S22 18+
+ (I =d1p) proisre—1 +PMo0p £21, B> 1, (4)

and the normalizing condition is
00 oo na Do oo oo
mot D, Y moukt D, > mant} ) m =1,
=1 k=1 i=1 k=0 i=1 k=1

To solve equations (1) — (4) we introduce the following gencrating functions and aux-
iliary generating functions:

po(x,2) = Y0 30 mouex 2% poi(e) = Y mouet; i1
o0 oo 1 OO *

pilx,2) = glzgggﬁl.l.kf_zk] Pri(z) = Eggovr:.a,kz’*; i1

pa%,2) = TR Y moed' 2y wu(e) = Y Romiazt; i21.

Multiplying equations (2)—(4) by 2*, summing over & and the result by x' and summing
over i, nd having into account (1) we obtain:

L D oo(x,2) = p(B+02)A%) — aol11(2) — peos(2) +
+ p[A(x) — ao] 9_5‘2.1(2) — p [A(x) — ao] mop, (5)
O s - (EBELAELIID 500 - o2l guale) +

+ prsi@eo(l,2) + Lvsi) e +

Siou fen S
Eﬂ;—&—vslx o1 (2) + P_(_Z_Z_O_)US] (x)mo,0, (6)
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= -(ﬁ+p2)%92(x.z) (@ a0 +p2)2Salx) — (B +p2)] p1(2) +

+ pzSy(x)eo(l,2) +p7Sa(x) wou(2) +
+ (pag+p2)(B+02)0Sa(x) py.1(2) +
+ p(z — ap) 2 Sa(x) mop. (7)
Setting x = 1 in (5) we have
peoll, 2) = p(A +62)(1 — ao)pr,1(2) — Py, (2) + B(L — ao)pz(2) — p(l — ag)mog,
and substituting the above equation into (6) and (7), we obtain

%= (;'J;rpz) e [z+ﬁac;(l - z}(§+62}i,51(x) —(p+p2)] o) +
= l e n —_—
+ 2 2)ﬁsi(xlﬁr”o.l(z]-!'Mvsl(x)wz.l(z)“"
PR L R ®)
] z
— (Pj-pz_) po(x,2) = [z+pag(l —2))0S(x) — (P +p2)wai(2) +

+ (z+pao(l = 2)(0+02)9Sx) pr1(2) +

+ pESa(x) (1 = 2) wo.1(2) + ag(z = 1) 2Sp(x) mop. (9)

Choosing x = f in (5) and x = p -+ pz in (6) and (7) and after some algebra we can
find the generating functions ¢g1(2) »1.1(2) and py(2):

pzlA@) —allp+pz—vSi(p +p2)0 +02) — 12S(p + p2)] 700

= 10

0,1 (2) o) 5 (10)
e an

w.1(2) = AR 2l _02;}52@ il ) 0,05 (12)

where Qz) = wS(p+p2) (0+02) +72S(p+p2)l[z+ (1 = 2) pAPE)] —2(p + p2).
Let us note that the above generating functions are defined for 2 € [0,1) andinz = 1
can be extended by continuity. By substituting (11) — (12) into (5), (8) and (9) we can
derive the generating functions obtaining the following theorem:
Theorem 1. The generating functions of the stationary distribution of the chain are
given by

alrz) = SR -AD)
xX—p
pxz[fj+pz—uSi(ﬁ+pz)(§+ﬂz)—E»zSg(erpz)]?T
20) 0.0
: _ Si)-Sip+p2z) pxAP)(1—2)v(p+p2)
L) = x—(p+p2) Q(z) s
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So(x) = Salp+p2) pxzAQ@)(1-2)7(F+p2)
x—@+pz) Q(2) gl

walx, 2)

5 A(5) — il — 7 — rs =
where Ty = e - yl il Upz‘
Ap)ve
Let us present some performance measures for the system at the stationary regime:
The system is occupied with probability

AP) Wl —p)+vl0+o+vp +ipy—p

W0(1'1)+W1(1-i)+€92(1-1): VBA(IJ)

25 f— =
The server is idle with probability 7o + wo(1,1) = v VP vnz'

The mean number of customers in the orbit is

T f

BN = 5T —vm —om == 3"

The mean number of customers in the system is

T

E|L] = I s
) 2[p+pA@) —vp —ivpy— v —0) A

where 7= [ B1a+ D) PP +2[0vpy + 0 pa) +2p v pr + D pa + v 6+ — p][1 — A(D)].
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