РАЗМЕРНЫЕ ЭФФЕКТЫ В ОСАЖДЕНИИ АТОМНЫХ СЛОЕВ МЕТАЛЛОВ НА ХАЛЬКОГЕНИДЫ МЕТАЛЛОВ

Е. Н. Анискевич, Н. В. Малащёнок

введение

Подпотенциальное осаждение атомов металлов на инородную подложку (underpotential deposition – upd) протекает при потенциалах, превышающих равновесный потенциал образования массивной фазы металла $E(\text{Me}^{z^+}/\text{Me})$ и характеризуется формированием суб- или монослоя. Поверхностно-лимитированный характер процесса *upd* лежит в основе синтеза тонких пленок и наноструктур полупроводников [1], может применяться для определения реальной (электрохимически активной) площади поверхности электродов [2], в электрокатализе и др.

Изучение *upd* на наночастицах металлов показало влияние размера частиц на потенциал осаждения адатомов и степень заполнения поверхности [3]. Помимо этого, процесс *upd* позволяет контролировать рост определенных кристаллографических граней при получении наночастиц металлов [4]. По этой причине интерес представляет выявление закономерностей влияния размера частиц на подпотенциальное осаждение.

В настоящее время изучен ряд систем, в которых осаждение проводилось на наночастицы металлов. Вместе с тем, размерные эффекты в *upd* не изучались на наночастицах халькогенидов металлов. Целью данной работы является изучение процесса *upd* на электродах, сформированных из наночастиц CdS, CdSe, PbSe.

ПОЛУЧЕНИЕ И ХАРАКТЕРИЗАЦИЯ НАНОКРИСТАЛЛИЧЕСКИХ PBSE, CDSE, CDS ЭЛЕКТРОДОВ

Нанокристалличские CdS, CdSe, PbSe электроды получали методом химического осаждения из раствора на FTO-стекла. Перед использованием FTO-стекла очищали нагреванием до кипения в смеси (1:1 по объему) 30 % H_2O_2 и 25 % NH₃. Состав растворов осаждения указан в таблице 1. Размер кристаллитов в пленках халькогенидов варьировали, контролируя температуру осаждения (PbSe и CdSe) или путем последующего прогрева в инертной атмосфере (CdS). Температура осаждения CdSe составляла 3, 30, 80 °C. Температура осаждения PbSe составляла 21, 43, и 66 °C. CdS осаждали при 75 °C, последующий прогрев проводили в атмосфере Ar при 320 и 450 °C.

	Концентрация веществ для осаждения, моль/л		
Вещество	CdS	CdSe	PbSe
CdSO ₄	-	0,08	-
Cd(NO ₃) ₂	0,03	-	-
Pb(CH ₃ COO) ₂	-	-	0,06
Na ₂ SeSO ₃	-	0,08	0,05
$CS(NH_2)_2$	0,08	-	-
КОН	-	до рН 10	0,08
нитрилтриацетат	-	0,16	-
цитрат натрия	0,12	-	0,16
NH ₃	0.15	-	-

Состав растворов химического осаждения

Для установления состава полученных пленок PbSe и CdS использовали рентгенофазовый анализ (РФА) (рис. 1). Из РФА было установлено, что CdS осаждается в структурном типе вюрцита. Структура полученного PbSe соответствует типу NaCl. Отсутствие рефлексов PbSe на рентгенограммах для двух образцов (кривые 2-3, рис. 1(б)) является следствием малой толщины пленки.

Рис. 1. Рентгенограммы пленок CdS (*a*) и PbSe (*б*): CdS: 1 – FTO, 2 – осажденный при 75°С, 3 – прогретый в Ar при 320°С, 4 – прогретый в Ar при 450°С; штриховые линии соответствуют рефлексам CdS;

PbSe: 1 – FTO, 2 – осажденный при 21 °C, 3 – осажденный при 43 °C, 4 – осажденный при 66 °C; штриховые линии соответствуют рефлексам PbSe

На рисунке 2 представлены спектральные зависимости квантового выхода фототока для CdS и CdSe, линеаризованные в координатах для прямых оптических переходов $(Y hv)^2 - hv$.

Puc. 2. Зависимость (*Y*·*hv*)² от энергии кванта излучения: (*a*) 1 – свежеосажденный CdS, 2 – CdS, прогретый при 320 °C, 3 – CdS, прогретый при 450 °C; (*б*) 1 – CdSe, осажденный при 3 °C, 2 – CdSe, осажденный при 30 °C, 3 – CdSe, осажденный при 80 °C

Из рисунка 2 ясно видно, что край поглощения пленок селенида кадмия и сульфида кадмия сдвигается в длинноволновую область при увеличении температуры осаждения и температуры прогрева. Указанный сдвиг обусловлен изменением размера частиц, который регулируется температурой – более высокая температура соответствует росту более крупных кристаллитов.

Таким образом, варьируя температуру осаждения или прогрева, получили пленки с различным размером кристаллитов (таблица 2).

Таблица 2

№ образца	CdS	CdSe	PbSe
1	5 нм	3 нм	4 нм
2	6 нм	6 нм	4 <d<16 td="" нм<=""></d<16>
3	Массивный	12 нм	8-16 нм

Размеры кристаллитов пленок халькогенидов металлов

Размеры частиц CdS и CdSe определяли из спектральных данных по размерной зависимости ширины запрещенной зоны E_g [5]. Размер частиц PbSe соответствует таковому в оригинальной методике получения [6].

ОСАЖДЕНИЕ АДАТОМОВ CD И PB HA CDSE, CDS, PBSE

На рис. 3 представлены циклические вольтамперограммы (ЦВА) CdS и CdSe в Cd²⁺–содержащем растворе и PbSe в Pb²⁺–содержащем растворе и в растворах фоновых электролитов. В растворах, содержащих ионы Cd²⁺ или Pb²⁺ протекает ток при потенциалах выше равновесного потенциала $E(Me^{z+}/Me)$. Данного тока не наблюдается в фоновых электролитах, из чего следует, что данный ток обусловлен процессом *upd*. В случае CdS (Puc 3(a), 16-36) и CdSe (Puc 3(б), 1-3) этот процесс

химически необратим, в то время как на PbSe (Puc 3(в), 16-36) регистрируется пик анодного окисления адатомов.

Рис. 3.(а) ЦВА пленочных CdS электродов в 0,1 моль/л Na₂SO₄ + 0,01 моль/л CdSO₄ (б) ЦВА пленочных CdSe электродов в 0,1 моль/л Na₂SO₄ + 0,01 моль/л CdSO₄ (в) ЦВА пленочных PbSe электродов в 0,1 моль/л KNO₃ + 0,01 моль/л Pb(NO₃)₂ Штриховые кривые соответствуют ЦВА в растворах фоновых электролитов (только KNO₃ и Na₂SO₄). Нумерация электродов соответствует таблице 2.

Потенциал осаждения адатомов металлов на всех исследованных в данной работе халькогенидах зависит от размера частиц: большее значение потенциала соответствует более крупным частицам подложки.

Таким образом, были получены и охарактеризованы нанокристаллические CdS, CdSe и PbSe-электроды с различным размером частиц. Электрохимические измерения показали возможность протекания *upd* на наночастицах халькогенидов металлов с размерной зависимостью потенциала осаждения адатомов. Бо́льшие значения потенциала реализуется для бо́льших частиц, аналогично *upd* на металлических наночастицах.

Литература

- 1. Gregory B.W., Stickney L.L. Electrochemical atomic layer epitaxy (ECALE) // J. Electroanal. Chem. 1991. Vol. 300, № 1–2. P. 543–561.
- 2. *Malashchonak M.V. [et al.]* Evaluation of electroactive surface area of CdSe nanoparticles on wide bandgap oxides (TiO₂, ZnO) by cadmium underpotential deposition / // Electrochem. commun. 2016. Vol. 72. P. 176–180.
- 3. Campbell F.W., Compton, R.G. Contrasting underpotential depositions of lead and cadmium on silver macroelectrodes and silver nanoparticle electrode arrays // Int. J. Electrochem. Sci. 2010. Vol. 5. P 407–413.
- 4. *Personick M.L. [et al.]* Shape control of gold nanoparticles by silver underpotential deposition // Nano Lett. 2011. Vol. 11, № 8. P. 3394–3398.
- 5. *Ghows N*. A novel method for the synthesis of CdS nanoparticles without surfactant // Ultrason. Sonochem. 2011. Vol. 18, № 1. P. 269–275.
- 6. Gorer, S. Hodes, G. Quantum size effects in chemically deposited, nanocrystalline lead selenide films // J. Phys. Chem. 1995. Vol. 99, № 44. P. 16442–16448.