НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ СЕКЦИИ НЕФТЕПРОВОДА С УЧЕТОМ РАЗЛИЧНЫХ ВИДОВ ВНУТРЕННИХ КОРРОЗИЙНЫХ ДЕФЕКТОВ И СТАЛЬНОЙ МУФТЫ

С. С. Щербаков, О. А. Насань, Д. А. Подгайская

ПОСТАНОВКА ЗАДАЧИ

В работе рассмотрено влияние различных внутренних коррозионных дефектов на напряженно-деформированное состояние секции трубы, расположенной на участке ННС Пинск нефтепровода Мозырь – Брест 3, со свободной внешней поверхностью (на воздухе) и при заглублении в грунт на 0,8 м с учетом поля тяготения в упругой статической постановке. Также было смоделировано и проанализировано состояние данных секций после ремонта стальной обжимной муфтой с набивными кольцами. В качестве существенно различных внутренних дефектов выбрано одно протяженное и множество мелких, равных ему по объему, повреждений. Кодификация моделей представлена в таблице 1.

Для определения параметров протяженного повреждения была проанализирована выборка из статистических данных по внутренним коррозионным пятнам длиной не менее 50 см [1]. Для трубы диаметром 720 мм с самой распространенной толщиной стенки секции в 8,8 мм найден дефект шириной 117 мм, длиной 1146 мм и глубиной 1,5 мм.

Таблица 1

Условия нагружения	На воздухе	На воздухе со стальной обжимной муфтой и набивным кольцом	В грунте	В грунте со стальной обжимной муфтой и набивным кольцом
Стальная труба с внутренним дефектом	DT	DTI	DTG	DTIG
Стальная труба с множественными внутренними дефектами	MDT	MDTI	MDTG	MDTIG

Кодификация расчетов

Геометрические характеристики трубы и обжимной муфты с технологией ремонта приведены в [2–3], механические параметры указаны в таблице 2. Коэффициент трения скольжения между стенками трубы и муфты принят равным 0,18. Для анализа напряженно-деформированного состояния, в силу симметрии модели, достаточно рассмотреть четверть секции трубы. Для схем нагружения (см. рисунок 1) граничные условия принимают следующий вид:

$$\begin{aligned} u^{(1)}\Big|_{r=r_2} &= u^{(2)}\Big|_{r=r_2} , \sigma_r\Big|_{r=r_1} = -p_1, \\ \sigma_r\Big|_{r=r_2} &= p(\phi), \sigma_{r\tau}\Big|_{r=r_2} = fp(\phi), \end{aligned}$$
(1)

где индекс 1 соответствует трубе, 2 – грунту, $p(\varphi)$ – распределение давления на контактной поверхности трубы, f – коэффициент трения, $\tau = \varphi, z$.

Таблица 2

Haapauva vozanua za	Механические характеристики				
пазвание материала	Е, ГПа	ν	σт, МПа	ρ, кг/м ³	
09Г2С (муфта)	210	0,3	395	7850	
17ГС (труба)	210	0,3	360	7850	
Грунт [2]	0,0051	0,25		2500	

Механические характеристики материалов системы

Рис. 1. Расчетные схемы трубы с коррозионным дефектом и обжимной муфтой: *а)* на воздухе; *б)* в грунте

При предположении об эллипсоидальной форме внутренних повреждений по данным о расположении и геометрическим характеристикам дефектов в секциях трубопровода были определены параметры Вэйбулловских распределений, описывающих длины, ширины и глубины дефектов. Угловое положение описано Гауссовским распределением. Распределение дефектов в продольном направлении секции трубы задано равномерным. На рисунке 2 представлены сгенерированные по данным распределениям дефекты на развертке секции трубы, имеющие тот же объем, что и протяженное повреждение.

Рис. 2. Модель трубы со множественными внутренними дефектами

НАПРЯЖЕННОЕ СОСТОЯНИЕ

На рисунке 3 показано, что напряжения максимальной интенсивности сосредоточены в области дефектов во всех моделях.

Использование муфты для ремонта трубы с протяженным коррозионным повреждением на воздухе (DT) приводит к снижению интенсивности напряжений σ_{int} примерно на 58 % (DTI).

В модели с грунтом и множественными повреждениями (MDTG) максимальная интенсивность напряжений σ_{int} примерно на 36,6 % больше чем в модели с одним крупным повреждением (DTG).

Максимальные значения эквивалентных напряжений σ_{int} в области ремонта увеличиваются на 38 % и 15,7 % при сравнении единичного крупного протяженного повреждения со множественными для расчетов DTI и MDTI, DTIG и MDTIG соответственно.

Учет влияния веса грунта на стенку трубы приводит к увеличению максимальных эквивалентных напряжений σ_{int} на 10,3 % и 2,8 % для расчетов DT и MDT соответственно.

В целом, грунт увеличивает напряжения в нижней части секции трубы.

Рис. 3. Распределение интенсивности напряжений σ_{int} в секции трубы: *а)* DT, МПа; *б)* DTG, МПа; *в)* DTI, МПа; *г)* DTIG, Мпа, *д)* MDT, МПа; *е)* MDTG, МПа; *ж)* MDTI, МПа; *3)* MDTIG, МПа

ЗАКЛЮЧЕНИЕ

Построены компьютерные модели, позволяющие описать напряженно-деформированное состояние секций трубы с протяженным и множественными коррозионными повреждениями на воздухе и в грунте. В целом, грунт оказывает значительное количественное и качественное влияние на НДС секции трубы, нагруженной внутренним давлением. Заглубление трубопровода на 0,8 метра увеличивает максимальные эквивалентные напряжения вплоть до 10,3 % по сравнению с секцией трубы на воздухе. В результате расчетов установлено, что в модели со множественными коррозионными дефектами без ремонтных конструкций максимальная интенсивность напряжений σ_{int} больше, чем в модели с одним крупным дефектом, примерно на 46,3 % без учета грунта и на 35,1 % с его учетом. Этот эффект обусловлен большой глубиной некоторых из множественных мелких дефектов.

В области ремонтных работ для трубы со свободной внешней поверхностью показано снижение интенсивности напряжений σ_{int} примерно на 58 % и 52 % для расчетов DTI и MDTI соответственно.

Установлено, что на напряженно-деформированное состояние модели со множественными повреждениями грунт оказывает меньшее воздействие, чем на модель с внутренним протяженным дефектом.

Литература

- Тюрин, И.Г. Технический отчет по диагностическому обследованию нефтепровода внутритрубными инспекционными приборами «Многоканальный профилемер ПРН», «Дефектоскоп внутритрубный магнитный МСК», «Комбинированный ультразвуковой дефектоскоп ДКУ» / И.Г. Тюрин, В.П. Авдеев, М.В. Масленников, А.Б. Гавришин, 2013. 326 с.
- Щербаков, С.С. Напряженно-деформированное состояние линейного участка нефтепровода с учетом коррозионных дефектов и ремонтных работ / С.С. Щербаков, А.Н. Козик, О.А. Насань // Теоретическая и прикладная механика. Выпуск 32. – Минск: БНТУ, 2017. – С. 352-357.
- 3. Паспорт. Ремонтная муфта со сварным соединением полумуфт П2 820х10х500 №6, Московская 118, Пенза, 2004. 3 с.