Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

МГЭИ ум. А.Д. Сахарова БГУ

вС.А. Маскевич

31» 05 2016

Регистрационный № УД<u>И/-20/6</u>/уч.

МОЛЕКУЛЯРНАЯ ЦИТОЛОГИЯ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности

1-80 02 01 Медико-биологическое дело

Учебная программа составлена на основе образовательного стандарта ОСВО 1-80 02 01-2013, учебного плана специальности 1-80 02 01 Медико-биологическое дело №39-14/уч.

СОСТАВИТЕЛИ:

- И.В. Коктыш, заведующий кафедрой экологической и молекулярной генетики учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета, кандидат биологических наук;
- М.С. Морозик, доцент кафедры экологической и молекулярной генетики Учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета, кандидат биологических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой экологической и молекулярной генетики учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова» БГУ (протокол № 9 от 21.04.2016 г.);

Советом факультета экологической медицины учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова» БГУ (протокол № 12 от 11.05.2016 г.);

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная дисциплина «Молекулярная цитология» предназначена для получения теоретических и практических навыков студентов специальности 1-80 02 01 Медико-биологическое дело.

Дисциплина «Молекулярная цитология» является одной из важнейших в системе биомедицинского образования и отражает современный взгляд на фундаментальную единицу жизни, каковой является клетка. Молекулярная цитология — признанный полноценный метод морфологического анализа, основанный на изучении и оценке клеточного материала, полученного различными способами: как из патологического очага, так и из нормальных тканей. Современный уровень развития молекулярной цитологии предъявляет высокие требования к уровню подготовки специалистов в данной области, который должен иметь представление не только о молекулярном строении и принципах функционирования клетки в целом, но и о структуре и организации органоидов клетки и их компонентов.

Цель курса «Молекулярная цитология»: заключается в подготовке специалистов, владеющих основными цитологическими методиками и знающих принципы организации и механизмы функционирования клетки на молекулярном уровне, готовых к производственной и научно-иследовательской деятельности в области клеточных технологий.

Задачи курса сводятся к усвоению знаний и формированию представлений: о строении мембран и мембранном адресовании белков, структуре ядра и механизмах ядерного экспорта и импорта, механизмах везикулярного транспорта, молекулярной организации и функционировании цитоскелета, регуляции клеточного цикла и механизмах пролиферации клетки, о научно-обоснованных подходах изучения опухолевого роста, современных методах исследования молекулярной организации клеток.

Основная идея курса — подчеркнуть значимость систематических исследований, начиная с комплекса ядерной поры и заканчивая внеклеточным матриксом, для установления процессов, лежащих в основе таких заболеваний, как цистофиброз, эпилепсия, рак и др.

В результате изучения курса «Молекулярная цитология» студенты должны:

знать:

- особенности молекулярной организации и функционировнии клетки и в целом;
- структуру, организацию и происхождение органоидов клетки и их надмолекулярных компонентах;
- виды цитологических исследований;
- методы фиксации и окраски препаратов для цитологического исследования;
- виды молекулярно-биологических исследований;

научно-обоснованные подходы к исследованию патологии клетки на молекулярном уровне

уметь:

- отбирать материал и владеть техникой приготовления, фиксации и окраски цитологических препаратов;
- готовить фиксаторы, красители и другие реактивы по прописям;
- производить цитохимическое исследование цитологического материала;
- вести необходимую лабораторную документацию.

владеть:

- навыками работы со световым и люминисцентным микроскопом;
- методами фиксации и окраски препаратов;
- подходами визуализации клеточных органелл.

Овладение методами исследования и теоретическими различных методов молекулярной цитологии, знание гистофункциональных особенностей клеток различных тканей, типов и механизмов межклеточных взаимодействий является обязательным для хорошего специалиста. Кроме необходимо способами получения материала владеть ДЛЯ цитологического исследования И специальными методами окраски цитологических препаратов.

Знания и умения, полученные студентами после изучения дисциплины «Молекулярная цитология», позволят выпускникам применять их при работе в любой морфологической лаборатории.

Курс «Молекулярная цитология» является дисциплиной по выбору студентов и изучается на четвертом году обучения (4 курс) с учетом знаний студентов, полученных при освоении ряда общепрофессиональных и специальных дисциплин: «Цитология и гистология», «Молекулярная организация и функционирование биосистем» и др.

Общее количество часов, отводимое на изучение учебной дисциплины 112 часов, из них 50 часов аудиторных занятий (26 часа лекций, 16 часов лабораторные занятия и 8 часов практических занятий). Форма текущей аттестации — экзамен в 7 семестре. Форма получения высшего образования — дневная.

Для управления учебным процессом и организации контрольнооценочной деятельности рекомендуется использовать учебно-методические комплексы, периодически проводить текущий контроль знаний лабораторных занятиях, также проводить защиту a выполненных лабораторных работ, а итоговый контроль – на экзамене.

Самостоятельная подготовка студентов включает подготовку презентаций по актуальным проблемам молекулярной цитологии, разработку научно-исследовательских проектов.

Основными методами (технологиями) обучения, отвечающими целям изучения дисциплины, являются:

- элементы проблемного обучения, реализуемые на лекционных и лабораторных занятиях;
- компетентностный подход, реализуемый на лекциях, лабораторных занятиях и при самостоятельной работе;
- учебно-исследовательская деятельность, реализуемая на лабораторных занятиях;
 - блочно-модульная система оценки знаний.

В целях формирования современных и социально-профессиональных компетенций выпускника вуза в практику проведения занятий целесообразно внедрять методики активного обучения и дискуссионные формы.

При чтении лекционного курса необходимо применять наглядные материалы в виде таблиц и мелового рисунка, а также использовать технические средства обучения для демонстрации слайдов и презентаций.

Для организации самостоятельной работы студентов по курсу следует использовать современные информационные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к лабораторным занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

предусматривают Лабораторные занятия освоение современными методами молекулярной цитологии и биологии такими как полимеразная цепная реакция, метод «Комет», и должны быть обеспечены световыми и микроскопами, препаратами люминисцентными ДЛЯ проведения исследования, оборудованием цитогенетического ДЛЯ проведения полимеразной цепной реакции.

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний в форме устного опроса, коллоквиумов, тестового компьютерного контроля по темам и разделам курса (модулям), проверки ведения лабораторных тетрадей. Для общей оценки качества усвоения студентами учебного материала рекомендуется использование рейтинговой системы.

Изучение программы завершается экзаменом, включающий тестовый контроль знаний, решение профессиональных задач и выполнение практических манипуляций.

ІІ. СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. МЕТОДЫ МОЛЕКУЛЯРНОЙ ЦИТОЛОГИИ

Введение. Предмет и методы молекулярной цитологии. Цитоморфологические, цитофизиологические и цитохимические методы исследования молекулярной и надмолекулярной организации клетки.

Специальные методы микроскопии. Классификация и многообразие оптических и специальных методов микроскопии, их назначение, возможности для исследования молекулярной организации клетки и ее компонентов.

Фазово-контрастная и интерференционная микроскопия. Физическая сущность метода. Понятие об амплитудных и фазовых объектах. Особенности конструкции микроскопа, возможность использования методов для анализа молекулярной организации.

Темнопольная микроскопия. Особенности конструкции микроскопа, использование эффекта Тиндаля, для изучения молекулярной организации клеток, устройство темнопольного конденсора, возможности метода, и его назначение.

Ультрафиолетовая микроскопия Физическая сущность метода. Особенности конструкции микроскопа, его назначение, возможности метода для исследования биомолекул.

Люминесцентная микроскопия. Особенности конструкции микроскопа, возможности метода, его назначение. Физическая сущность методов люминесцентной и конфокальной микроскопии.

Поляризационная микроскопия. Поляризационная микроскопия как пример косвенного метода морфологического анализа надмолекулярной организации клеточных структур. Физическая сущность метода. Особенности конструкции микроскопа, поляризатор и анализатор, возможности метода, его назначение.

Спектроскопические методы. Методы, позволяющие изучать «морфологию» молекул, их возможности.

Электронная микроскопия. Специфика метода электронной микроскопии и его возможности для анализа макромолекул и организации клеточных структур.

2. ПЛАЗМАЛЕММА

Особенности молекулярной организации плазмалеммы, самосборка мембран. Интегральные и периферические белки. Цитоскелет мембраны. Роль плазмалеммы в процессах фагоцитоза, пиноцитоза и специфического эндоцитоза, в межклеточных контактах и коммуникациях. Специализация мембран, производные плазмалеммы (гликокаликс, микроворсинки и др.).

3. ЯДРО КЛЕТКИ И ПРОЦЕССЫ ТРАНСПОРТА

Молекулярная организация ядерной оболочки и порового комплекса, механизм ядерного экспорта и импорта. Различия химического состава и свойств наружной и внутренней мембран нуклеолеммы. Ламина. Растворение и восстановление ядерной оболочки при делении клеток. Кариолимфа, ядерный матрикс.

Хроматин и хромосомы, молекулярная организация. Гетерогенность (фракции) ДНК. Уровни организации (структуризации) хроматина.

Молекулярная организация и функционирование ядрышка.

Механизмы ядерного экспорта и импорта.

4. ВНУТРИКЛЕТОЧНЫЕ ОРГАНЕЛЛЫ

Молекулярные механизмы синтеза и переноса моно- и политопных белков, дивергенция синтеза внутриклеточных и секреторных белков. Биосинтез мембранных липидов, первичное гликозилирование белков и липидов.

Эндоплазматический ретикулум, посттрансляционная модификация белков, механизмы возврата-задержки.

Пероксисомы, их биогенез, роль (пероксисомные болезни человека), транспорт белков в пероксисомы.

Молекулярная организация митохондрий, митохондриальные шапероны.

5. ВЕЗИКУЛЯРНЫЙ ТРАНСПОРТ. КОМПЛЕКС ГОЛЬДЖИ. ЛИЗОСОМЫ

Комплекс Гольджи, молекулярная организация и биохимические процессы. Вторичное гликозилирование. Адресация молекул.

Лизосомы, уникальность их мембран (lgpA и lgpB-белки), пути переноса веществ в лизосому.

Механизмы эндо- и экзоцитоза. Молекулярные механизмы формирования и движения пузырьков. Клатриновая оболочка.

6. ЦИТОСКЕЛЕТ. МИКРОТУБУЛЯРНЫЕ И МИКРОФИЛАМЕНТОЗНЫЕ КОМПОНЕНТЫ

Микротрубочки, участие их в формировании различных органоидов и структур. Самосборка. МАБ (ассоциированные белки).

Молекулярная организация и структура промежуточных филаментов.

Актиновые филаменты. Самосборка актиновых протофибрилл, актин-связывающие белки. Протофибриллы мышечной ткани.

Молекулярные двигатели.

7. ВНЕКЛЕТОЧНЫЙ МАТРИКС

Межклеточные соединения и передача информации. Клеточные контакты и адгезия, типы клеточных контактов. Молекулярная организация внеклеточного матрикса.

8. МЕЖКЛЕТОЧНАЯ СИГНАЛИЗАЦИЯ

Фосфорилирование и клеточная сигнализация. Способы доставки сигнальных молекул к клеткам. Сигнализация с участием и без участия клеточных рецепторов.

9. КЛЕТОЧНЫЙ ЦИКЛ И ДЕЛЕНИЕ КЛЕТКИ

Основные законы клеточного цикла. Фазы нормального клеточного цикла. Регуляторные точки фаз клеточного цикла. МРF — фактор стимуляции митоза, строение и роль циклина В. Деление клеток, фазы. Микротубулярные двигатели.

Молеклярные механизмы регуляции пролиферации. Рак.

Старение клеток, феномен Хейфлика (репликационное старение).

Апоптоз как физиологическая гибель клеток. Морфологические признаки апоптоза(кариорексис, пикноз и др.). Молекулярные механизмы апоптоза (индукторы, каспазы, фрагментация ДНК). Отличия апоптоза от некроза..

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

19	Название раздела, темы	Количество аудиторных часов						
Номер раздела, темы		Лекции	Практические занятия	Семинарские	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1	МЕТОДЫ МОЛЕКУЛЯРНОЙ ЦИТОЛОГИИ	2			12			Фронтальный опрос, защита отчета по лабораторной работе
2	ПЛАЗМАЛЕММА	2						Фронтальный опрос
3	ЯДРО КЛЕТКИ И ПРОЦЕССЫ ТРАНСПОРТА	4	2		4			Фронтальный опрос, защита отчета по лабораторной работе
4	ВНУТРИКЛЕТОЧНЫЕ ОРГАНЕЛЛЫ.	4						Фронтальный опрос
5	ВЕЗИКУЛЯРНЫЙ ТРАНСПОРТ. КОМПЛЕКС ГОЛЬДЖИ. ЛИЗОСОМЫ.	4	2					Фронтальный опрос
6	ЦИТОСКЕЛЕТ. МИКРОТУБУЛЯРНЫЕ И МИКРОФИЛАМЕНТОЗНЫЕ КОМПОНЕНТЫ	2						Фронтальный опрос
7	ВНЕКЛЕТОЧНЫЙ МАТРИКС	2	2					Фронтальный опрос
8	МЕЖКЛЕТОЧНАЯ СИГНАЛИЗАЦИЯ	2			2			Фронтальный опрос

1	2		3	4	5	6	7	8	9
9	КЛЕТОЧНЫЙ ЦІ ДЕЛЕНИЕ КЛЕТКИ	икл и	2	2					Фронтальный опрос
					l				
Итого			26	8		16			

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

Основная:

- 1. Клетки по Льюину/ Л. Кассимерис [и др.] ; пер. 2-го англ. изд. М.: Лаборатория знаний, 2016. 1056 с.
- 2. Фаллер, Дж. Молекулярная биология клетки: руководство для врачей / Дж. Фаллер, Д. Шилдс. М.: БИНОМ, 2014. 256 стр.
- 3. Молекулярная биология клетки / Альбертс Б, и соав. Пер. с англ., 2013. (тт. 1-3)

Дополнительная:

- 4. Бисерова Н.М. Методы визуализации биологических ультраструктур. М.: Товарищество научных изданий КМК, 2013. 104 с.
- 5. Морозова К.Н. Электронная микроскопия в цитологических исследованиях Новосибирск, НГУ, 2013. 85 с.
- 6. Сайфитдинова А.Ф. Двухмерная флуоресцентная микроскопия для анализа биологических образцов. СПб.: «СОЛО», 2008.- 72 с.
- 7. Ченцов Ю. С. Введение в клеточную биологию/ Ю. С. Ченцов. М.: Академкнига, 2004.
- 8. Штейн Г.И. Руководство по конфокальной микроскопии СПб: ИНЦ РАН, 2007. 77 с.
- 9. Molecular Cell-Biology / H. Lodish et al. 5th ed. 2003, 1052 p
- 10.Histology: a text and atlas: with correlated cell and molecular biology / M.H. Ross, W. Pawlina. 7th ed. –2016. 996 p.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для организации самостоятельной работы студентов по учебной дисциплине следует использовать современные информационные технологии: разместить в сетевом доступе комплекс учебных и учебнометодических материалов (программа, курс лекций, мультимедийные презентации, методические указания к лабораторным занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний. Для общей оценки качества усвоения студентами учебного материала рекомендуется использование рейтинговой системы.

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ

Для промежуточной и итоговой аттестации студентов создаются фонды диагностических и оценочных средств, технологий и методик диагностирования.

Процесс диагностики предполагает:

- контрольные работы по отдельным темам курса;
- рефераты;
- экзамен.

Критерии оценок

Для оценки учебных достижений студентов используются критерии, утверждаемые Министерством образования Республики Беларусь.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ С ДРУГИМИ ДИСЦИПЛИНАМИ

СПЕЦИАЛЬНОСТИ

Название	Название	Предложения об		Решение, принятое		
дисциплины, с	кафедры	изменениях в		кафедрой,		
которой требуется		содержании		разработавшей		
согласование		учебной		учебную		
		программы	ПО	программу (с		
		изучаемой		указание даты и		
		учебной		номера протокола)		
		дисциплине				
Цитология и	Кафедра			№ 9 от 21.04.2016г.		
гистология	экологической					
	и молекулярной					
	генетики					
Молекулярная	Кафедра			№ 9 от 21.04.2016г.		
организация и	экологической					
функционирование	и молекулярной					
биосистем	генетики					

Зав. кафедрой экологической и молекулярной генетики

И.В. Коктыш