Учреждение образования «Международный государственный экологический университет имени А.Д. Сахарова»

УТВЕРЖДАЮ

Проректор по учебновоспитательной и илеологической работе

МГЭУ-нум. А.Д. Сахарова

В.И. Красовский

«19» C6 2015

Регистрационный № УЛ 501-15 уч.

КСЕНОБИОЛОГИЯ И БИОТЕСТИРОВАНИЕ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности 1-33 01 05 Медицинская экология

Учебная программа составлена на основе образовательного стандарта ОСВО 1-33 01 05-2013 и учебного плана специальности 1-33 01 05 — Медицинская экология \mathbb{N} 40 — 14/уч.

составители:

- Е.М. Шпадарук, старший преподаватель кафедры экологической и молекулярной генетики учреждения образования «Международный государственный экологический университет имени А.Д. Сахарова»;
- Т.А. Красинская, доцент кафедры экологической и молекулярной генетики учреждения образования «Международный государственный экологический университет имени А.Д. Сахарова», кандидат биологических наук, доцент.

РЕЦЕНЗЕНТ:

Е.В. Колбанова, заведующий лабораторией диагностики отдела биотехнологии РУП «Институт плодоводства», кандидат биологических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой экологической и молекулярной генетики учреждения образования «Международный государственный экологический университет имени А.Д. Сахарова» (протокол № 10 от "21 2015 г.); Научно-методическим советом учреждения образования «Международный государственный экологический университет имени А.Д. Сахарова» (протокол № 10 от "16 ческа 2015 г.);

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Курс «Ксенобиология и биотестирование» предназначен для студентов 2 курса специальности медицинская экология факультета экологической медицины МГЭУ им. А. Д. Сахарова в объеме 88 часов, из которых 48 аудиторных часов (24 часа лекций и 24 часа лабораторных занятий). Форма текущей аттестации — зачет в 4 семестре, форма получения высшего образования — очная.

Курс «Ксенобиология и биотестирование» предназначен для студентов 3 курса специальности медицинская экология факультета экологической медицины МГЭУ им. А. Д. Сахарова в объеме 88 часов, из которых 12 аудиторных часов (8 часов лекций и 4 часа лабораторных занятий). Форма текущей аттестации — зачет в 6 семестре, форма получения высшего образования — заочная.

Ксенобиология и биотестирование одни из фундаментальных дисциплин являются ee теоретической экологии, ОНИ Ксенобиология формирует представление о ксенобиотиках, как техногенных поллютантах, веществах, которые воздействуют на организм при контакте с об основных механизмах действия ксенобиотиков на живые организмы; характере вызываемых ксенобиотиками реакций организма; о физико-химических методах анализа ксенобиотиков в биологических объектах. Биотестирование формирует представление о скрининге; выборе тест-объектов и тест-реакций; биологическом эпиморфизме; разработке основ промышленного и сельскохозяйственного видов мониторинга. А также дает возможность приобрести навыки владения методами поиска и систематизации научной информации по отдельным разделам ксенобиологии и биотестирования; экспрессного определения возможной биологической активности ксенобиотиков.

Дисциплина специализации «Ксенобиология и биотестирование» представляется не только как специфический курс лекций и совокупность лабораторных занятий, но и играет интегративную роль. В процессе усвоения этого курса систематизируются и обобщаются знания по основам общей и молекулярной биологии, цитологии, гистологии, биохимии, биофизики и аналитической и органической химии.

Целью преподавания курса «Ксенобиология и биотестирование» является формирование у студентов знаний о наиболее опасных источниках попадания вредных веществ в биосферу, вызываемых ими токсических эффектах и научно-прикладных подходах определения их опасности, а также средствах предупреждения и лечения отрицательных воздействий ксенобиотиков.

Задачи дисциплины:

• привить знания о закономерностях взаимодействия ксенобиотиков с живым организмом и экосистемой, механизмах

развития биологической реакции;

- сформировать представления о лекарственном и токсическом действии вещества;
- сформировать навыки расчетов основных токсических и фармакологических параметров.
- изучение структурных и функциональных свойств основных классов чужеродных веществ, механизмов регуляции поступления, выведения, распространения, превращения, вызываемых ими биологической реакции, а также систем биологического тестирования И ИХ использования экологическом мониторинге.

На лабораторных занятиях студенты должны закрепить и усвоить полученный материал об основных видах ксенобиотиков, механизме их действия и провести ассоциации с полученными ранее знаниями.

В ходе выполнения лабораторных работ студент должен приобрести навыки в выявлении специфических классов ксенобиотиков методом качественного анализа, влиянии ксенобиотиков на мембрану, изучить мембранотропную активность веществ в зависимости от степени их ионизации.

В результате изучения дисциплины «Ксенобиология и биотестирование» студент должен в соответствии с образовательным стандартом:

Знать:

- физико-химические свойства ксенобиотиков, лежащих в основе их классификации и биологической активности;
- закономерности взаимодействия ксенобиотиков с живыми структурами;
- характер вызываемых ксенобиотиками биологических реакций;
- мембранный и генетический механизм действия ксенобиотиков;
- процессы поступления, абсорбции, распределения, биотрансформации и выведения ксенобиотиков на уровне организма;
- особенности ксенобиологии растений;
- основные принципы биоаккумулирования и избирательного действия ксенобиотиков;
- закономерности трансформации ксенобиотиков в экосистемах;
- представления о скрининге и мониторинге ксенобиотиков.

Уметь:

 использовать методы химического анализа для индентификации и классификации чужеродных соединений в окружающей среде;

- использовать методы биотестирования для анализа уровня опасности индивидуальных химических веществ, компонентов окружающей среды;
- рассчитывать показатели экологической опасности химических веществ по различным параметрам;
- осуществлять поиск и систематизацию научной информации по отдельным разделам ксенобиологии;
 - уметь определять биологическую активность ксенобиотиков;
- уметь использовать результаты скрининга биологической активности ксенобиотиков для разных видов мониторинга.

Владеть:

- методами оценки качественных и количественных параметров, используемых в ксенобиологии;
- основными приемами биотестирования и биоиндикации ксенобиотиков;
 - аналитическими методами оценки токсичности ксенобиотиков.

Объем материала, указанного в учебной программе, может быть полностью выполнен лишь при полном и целесообразном использовании лекций, лабораторных занятий, правильной организации самостоятельной работы студентов. При разработке учебной программы допустимо производить необходимый отбор и перестановку материала. План курса лекций определяется лектором.

Учебные планы лекций, практикума и другие аналогичные вопросы относятся к компетенции соответствующего ВУЗа. Они зависят от конкретных условий. Допустимы также определенные вариации при выполнении программы, обусловленные различным уровнем подготовки студентов, уровнем технического оснащения учебного процесса.

Учебный материал включает следующие темы: «Введение в предмет», «Биологическая активность чужеродных соединений», «Взаимодействие ксенобиотиков с биологическими мембранами. Механизмы транспорта ксенобиотиков», «Механизмы мембранотропного действия ксенобиотиков», «Ионизация. Ее природа, связь с биологической активностью ксенобиотиков», «Биотрансформация органических ксенобиотиков», «Пути метаболизма ксенобиотиков в организме, детоксикация и биодеградация», «Поведение ксенобиотиков в экосистемах», «Неорганические ксенобиотики», «Биотестирование, как метод тестирования биологических активностей ксенобиотиков».

По отдельным разделам курса «Ксенобиология и биотестирование» могут быть предложены тестовые задания, контрольные работы, что позволит более эффективно осуществлять контроль знаний студентов.

Основными методами обучения, отвечающими целям изучения дисциплины, являются:

- элементы проблемного обучения, реализуемые на лекционных и практических занятиях;
- компетентный подход, реализуемый на лекциях, лабораторных занятиях и при организации самостоятельной работы студентов;
- учебно-исследовательская деятельность, реализуемая на лабораторных занятиях;
 - рейтинговая система оценки знаний.

При чтении лекционного курса необходимо применять наглядные материалы в виде таблиц и мелового рисунка, а также использовать технические средства обучения для демонстрации презентаций и обучающих фильмов.

Для организации самостоятельной работы студентов по курсу следует использовать современные информационные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к лабораторным занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Лабораторные занятия предусматривают определение класса органических соединений по цветным химическим реакциям, выделение и определение индивидуальных веществ методом тонкослойной хроматографии, изучение осмотический явлений в растительной клетке и мембранотропной активности ксенобиотиков, определение осмотически активных свойств ксенобиотиков разных классов методом биотестирования.

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний в форме устного опроса, коллоквиумов, тестового компьютерного контроля по темам и разделам курса (модулям), проверки ведения лабораторной тетради. Для общей оценки качества усвоения студентами учебного материала рекомендуется использование рейтинговой системы.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Введение в предмет

Определение терминов: «ксенобиология», «ксенобиотик», «токсикант»; примеры и различия. Масштабы и причины химического загрязнения ксенобиологии. Основные биосферы. Предмет проблемы современной ксенобиологии. Связь ксенобиологии с другими науками. Объекты ксенобиологии. Виды ксенобиотиков. Методы, применяемые в ксенобиологии: качественный и количественный химический анализ, физикофизические химические метолы. методы, метолы экологического мониторинга: биотестирование и биоиндикация. Понятие биомаркеров. Преимущество использования биоиндикаторов. Классификация ксенобиотиков по общим и специальным принципам. Понятие о токсическом лействии ксенобиотиков.

Тема 2. Биологическая активность чужеродных соединений

Формирование представлений о биологической активности веществ. Разнообразие видов и классификация химических соединений по видам биологической активности. Биосистемы — мишени действия ксенобиотиков. Уровни организации живой материи. Механизм действия ксенобиотиков на каждом из уровней организации. Следствия проявлений негативных воздействий. Фундаментальные свойства живых систем. Свойства ксенобиотика, определяющие его токсичность: размеры молекулы, геометрия молекулы, физико-химические свойства вещества, стабильность, химические свойства. Понятие рецептор, виды рецепторов, примеры.

Тема 3. Взаимодействие ксенобиотиков с биологическими мембранами. Механизмы транспорта ксенобиотиков

Плазматическая мембрана действия первичная мишень ксенобиотиков. Концепция взаимодействия рецепторов, гипотезы ксенобиотиков с рецепторами. Типы мембранотропности ксенобиотиков и взаимодействие химические связи, определяющие ксенобиотика мембранактивными структурами. Особенности мембранотропных эффектов и развитие реакции на действие поверхностно-активных веществ.

Механизмы транспорта: пассивный и активный транспорт. Пассивный транспорт: простая диффузия, осмос, диффузия ионов, облегченная диффузия. Активный транспорт (первичный и вторичный активный транспорт). Везикулярный транспорт: эндоцитоз (пиноцитоз, фагоцитоз, рецептор-опосредованный эндоцитоз) и экзоцитоз. Структурное строение

отдельных транспортных систем биологических мембран. Проницаемость мембран к различным веществам. Коэффициенты проницаемости и распределения. Влияние ксенобиотиков на барьерно-транспортные свойства мембраны и физико-химические характеристики цитоплазмы. Пути поступления ксенобиотиков.

Тема 4. Механизмы мембранотропного действия ксенобиотиков

Понятие адсорбции, ее механизм. Свойства сорбента и адсорбтива. Специфическая и неспецифическая адсорбция. Уравнение Лэнгмюра, условия, при которых оно справедливо. Изотермы Лэнгмюра. Избирательная токсичность. Агонисты (природные и синтетические), антагонисты. Факторы, влияющие на избирательную токсичность ксенобиотиков (преимущественное накопление и распределение, биохимический, цитологический, свойства самого ксенобиотика). Коергизм, аддитивность, антагонизм и синергизм ксенобиотиков. Виды синергизма. Виды антагонизма, механизмы и следствия.

Тема 5. Ионизация. Ее природа, связь с биологической активностью ксенобиотиков

Природа ионизации. Механизмы ионизации у кислот, оснований и солей. Константа ионизации (рКа) и степень ионизации (расчет). Различия в обеспечивающие избирательность. ионизации, Вещества, обладающие большей биологической активностью ионизированном состоянии. менее активные в ионизированном состоянии. Вещества, проявляющие биологическое действие в виде ионов и неионизированных молекул.

Тема 6. Биотрансформация органических ксенобиотиков

Факторы, влияющие на концентрацию ксенобиотиков в организме, описываемые LADME-системой. Механизм поступления ядов в организм: понятия токсикокинетики и хемобиокинетика. Важнейшие характеристики вещества, влияющие на его токсикокинетические параметры. Свойства организма, влияющие на токсикокинетику ксенобиотиков. Всасывание и распределение веществ. Факторы, влияющие на распределение ксенобиотиков (пространственный, временной, концентрационный) Биотрансформация ксенобиотиков в организме. Понятия биотрансформации, метаболизма, токсификации. Механизм биотрансформации. Выведение ксенобиотиков из организма, основные пути. Поступление и транспорт ксенобиотиков в растения.

Тема 7. Пути метаболизма ксенобиотиков в организме, детоксикация и биодеградация

Обшая схема процесса биотрансформации. Первая фаза биотрансформации. Характеристика ферментов, катализирующих метаболизм ксенобиотиков. Особенности участвующих ферментов, Основные реакции метаболизма ксенобиотиков и их реакциях окисления. разновидности: окисление, восстановление, гидролиз и дегалогенирование. Вторая фаза биотрансформации. Биологический смысл реакции конъюгации. Особенности Факторы, влияющие метаболизм ксенобиотиков. на метаболизма ксенобиотиков у различных организмов.

Роль генной инженерии в борьбе с загрязнением окружающей среды. Механизмы детоксикации (общие положения). Детоксикация фенолов, системных фунгицидов, гербицидов.

Тема 8. Поведение ксенобиотиков в экосистемах

Судьба ксенобиотиков в биогеоценозах. Экологическая характеристика Ксенобиотический профиль биогеоциноза. ксенобиотического формирования профиля. Понятия экотоксиканта, экополлютанта и персистентности. Персистентные и неразлагающиеся Элиминирование поллютантов из окружающей среды: ксенобиотики. абиотическая и биотическая трансфортация, перераспределение веществ в среде. Биоаккумуляция и биомагнификация экополлютантов. Механизмы экотоксичности: прямое, опосредованное и смешанное действие. Острая и хроническая экотоксичность. Экологическая опасность биоразрушаемых и ксенобиотиков, сублетальных остатков неразложившихся опасность концентраций.

Тема 9. Неорганические ксенобиотики

Металлы в живых системах и их биоцидные эффекты. Тяжелые металлы (биогенные и небиогенные) в живых системах и их биоцидные эффекты. Двухфазность реакции действие тяжелых металлов. Хелатообразование И снижение токсических эффектов. Механизм хелатообразования. Типы лигандов, связывающие металлы. Основные взаимодействия Количественные аспекты металл-лиганд. аспекты связывания металлов лигандами. Перспективы применения хелатообразующих Примеры биотрансформации соединений. неорганических Механизмы биологического действия соединений. хелатирующих агентов.

Тема 10. Биотестирование, как метод тестирования биологических активностей ксенобиотиков

Общие представления о биотестировании. Принципиальное отличия биотестирования от других методов, применяемых в ксенобиологии. Биосенсорные устройства: понятие и основные характеристики. Тестобъект: виды (ферменты, антитела, органеллы клеток, биологические мембраны (тени эритроцитов, везикулы), клетки, ткани, микроорганизмы). Иммобилизация, ее способы. Тест-реакции. Выбор тест-объектов и тестреакций. Общие представления о скрининге и мониторинге. Структурная организация системы испытания ксенобиотиков на биологические активности. Выбор тест-объектов тест-реакций. И Принцип биологического эпиморфизма. Правила GLP и GCP – западные критерии фармакологической активности ксенобиотиков безопасности И воздействия на человека. Разработка основ промышленного, сельскохозяйственного и экологического видов мониторинга на основе техники биологического испытания ксенобиотиков

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ для студентов очной формы получения высшего образования

		k	Соличес	ство ауд	циторны	ых часо	В	
Номер темы	Наименование темы и раздела	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1.	Введение в предмет	2		_		_		1,2
1.1	Идентификация и классификация ксенобиотиков по цветным химическим реакциям				4			4,7
2	Биологическая активность чужеродных соединений	2	-	_	-	_		1,2
2.1	Методы качественного анализа ксенобиотиков в биологических объектах методом хроматографии				4			3,4,5,7
3	Взаимодействие ксенобиотиков с биологическими мембранами. Механизмы транспорта ксенобиотиков	3	-	_	-	_		1,2
3.1	Действие ксенобиотиков на осмотические свойства клетки				4			3,4,5
4	Механизмы мембранотропного действия ксенобиотиков	3						1,2,3,4,5,7

5	Ионизация и биологическая активность ксенобиотиков	2		
5.1	Мембранотропная активность ксенобиотиков		4	3,4,5,7
5.2	Влияние ксенобиотиков на физико-химические свойства цитоплазмы. Белки – биомишени воздействия ксенобиотиков.		4	3,4,5,7
6	Биотрансформация органических ксенобиотиков	2		1,2,3,4, 7
7	Пути метаболизма ксенобиотиков в организме, детоксикация и биодеградация	4		
8	Поведение ксенобиотиков в экосистемах	2		3,4,5,7
8.1	Взаимосвязь между степенью ионизации ксенобиотика и скоростью его поступления в клетку ксенобиотиков		4	3,4,5,7
9	Неорганические ксенобиотики	2		1,2,3,4,5
10	Биотестирование, как метод тестирования биологических активностей ксенобиотиков	2		1,2,3,4,5,6
Итого		24	24	

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ для студентов заочной формы получения высшего образования

		k	Соличес	тво ауд	циторнь	ых часо	В	
Номер темы	Наименование темы и раздела	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
2.	Введение в предмет	0,4						1,2
1.1	Идентификация и классификация ксенобиотиков по цветным химическим реакциям				-			5,7
2	Биологическая активность чужеродных соединений	0,5						2,5,7
2.1	Методы качественного анализа ксенобиотиков в биологических объектах методом хроматографии				2			4,5,6,7
3	Взаимодействие ксенобиотиков с биологическими мембранами. Механизмы транспорта ксенобиотиков	1,1						1,2
3.1	Действие ксенобиотиков на осмотические свойства клетки				-			5,7

4	Механизмы мембранотропного действия ксенобиотиков	0,8		1,2,3,4,5,7
5	Ионизация и биологическая активность ксенобиотиков	1		1,2,7
5.1	Мембранотропная активность ксенобиотиков		-	5,7
5.2	Влияние ксенобиотиков на физико-химические свойства цитоплазмы. Белки – биомишени воздействия ксенобиотиков.		-	5,7
6	Биотрансформация органических ксенобиотиков	1,1		1,2,3,4,7
7	Пути метаболизма ксенобиотиков в организме, детоксикация и биодеградация	1		1,2
8	Поведение ксенобиотиков в экосистемах	0,6		5,7
8.1	Взаимосвязь между степенью ионизации ксенобиотика и скоростью его поступления в клетку ксенобиотиков		2	3,4,5,7
9	Неорганические ксенобиотики	1		1,2,3,4,5
10	Биотестирование, как метод тестирования биологических активностей ксенобиотиков	0,5		1,2,3,4,5,6
Итого		8	4	

Информационно-методическая часть

ЛИТЕРАТУРА

Основная литература

	Название	Год
		издания
1. В.М. Юрин	Основы ксенобиологии	2002
2. ЮА. Альберт	Избирательная токсичность.	1989
3. Г.М. Баренбой, А.Г. Маленков	Биологически активные вещества. Новые принципы поиска.	1986
4. Н.Я. Головенко, Т.Л. Карасева	Сравнительная биохимия чужеродных соединений.	1983
5. Ю. И.Губский, В.Б. Долго-Сабуров, В.В. Храпак	Химические катастрофы и экология.	1983
6. С.В.Дурмишидзе, Т.В.Девдариани, Х.А Кахниашвили, О.А. Буадзе	Биотрансформация ксенобиотиков в растениях	1988
7. В.Ф. Парк	Биохимия чужеродных соединений.	1973
8. М.М. Телитченко, С.С. Остроумов	Введение в проблемы биохимической экологии.	1990
9. В.М.Юрин, В.М.Иванченко, С.Г.Галактионов	Регуляция функций мембран растительных клеток.	1979
10.Л.СМ. Шеремет, Г.Л. Ермоленко, Ю.С. Сарана	Лабораторные работы по ксенобиологии и биотестированию	2012
11.А.С. Куценко	Основы токсикологии	2002

Дополнительная литература

Автор	Название	Год
		издания
12.Н.Я. Головенко	Механизмы реакций метаболизма ксенобиотиков в биологических мембранах	1981
13.Л.Н.Пирузян	Действие физиологически активных соединений на биологические мембраны	1974
14.И.В. Комиссаров	Элементы теории рецепторов в молекулярной фармакологии	1969
15.С.А Остроумов	Введение в биохимическую экологию	1986
16. Д.Ш. Угрелихидзе С.В. Дурмишидзе	Поступление и детоксикация органических ксенобиотиков в растениях	1984
17.Д.П. Харборн	Введение в экологическую биохимию	1985
18.В.М. Юрин А.И. Соколик	Регуляция ионного транспорта через мембраны растительных клеток	1991
А.П. Кудрашов		
19.А.П. Кудряшов	Биосенсорные устройства	2003
20.Richard B. Philp	Ecosystems and human health: toxicology and environmental hazards	2001

ПЕРЕЧЕНЬ РЕКОМЕНДУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ

В качестве формы итогового контроля по учебной дисциплине рекомендован зачет. Для текущего контроля качества усвоения знаний студентами можно использовать следующий диагностический инструментарий:

Формы контроля знаний:

№ п/п	Форма				
1.	Выборочный контроль на лекциях				
2.	Проверка конспектов лекций студентов				
3.	Проведение контрольных работ в группе				
4.	Собеседование при защите отчетов по лабораторным занятиям				
5.	Написание рефератов				
6.	Устный опрос на лабораторных занятиях				
7.	Проведение зачета по курсу				

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕЦИАЛЬНОСТИ

Название	Название	Предложения	Решение, принятое
дисциплины, с	кафедры	об изменениях в	кафедрой,
которой		содержании	разработавшей учебную
требуется		учебной	программу (с указание
согласование		программы по	даты и номера
		изучаемой	протокола)
		учебной	
		дисциплине	
Основы общей	Биологии	нет	№ от г.
И	человека и		
молекулярной	экологии		
биология			
Биохимия	Биихимии и	нет	№ от г.
	биофизики		
Органическая	Биихимии и	нет	№ от г.
химия	биофизики		
Аналитическая	Биихимии и	нет	№ от г.
химия	биофизики		

Зав. кафедрой экологической и молекулярной генетики

Г.А. Писарчик