УДК 55(476.5-924.8)

СТРОЕНИЕ НАДПОЙМЕННОЙ ТЕРРАСЫ ДОЛИНЫ р. ЗАПАДНОЙ ДВИНЫ У д. БАРВИН ВИТЕБСКОГО РАЙОНА БЕЛАРУСИ

А. А. Вашков¹, Ю. И. Заяц², А. П. Жолнерович², Р. Ю. Бадак², Л. Г. Виленчиц², Е. В. Гружевская², Н. С. Червоник², А. А. Суровицкий²

В ходе учебной практики географического факультета БГУ по геологической съёмке в районе п. г. т. Руба – д. Подберезье Витебского р-на были получены новые сведения о строении надпойменных террас долины р. Западная Двина. Исследованию способствовало большое количество искусственных горных выработок, созданных в рамках подготовки долины реки к затоплению в связи с планируемым в 2017–2018 г. вводом в эксплуатацию Витебской ГЭС. Так, у д. Барвин Витебского р-на надпойменную террасу с абсолютными отметками поверхности 139–142 м вскрывает котлован. Его размеры составляют 600 м в длину при ширине до 250 м, а глубина достигает 7 м. Дно котлована преимущественно ровное, с уклоном к пойме реки, нарушается выступами – останцами поверхности площадки террасы, и водоотводящими канавами, открытыми в сторону поймы долины реки. Строение надпойменной террасы вскрывается в обнажениях останцев первоначальной поверхности и в канавах, пересекающих дно котлована (рис. 1).

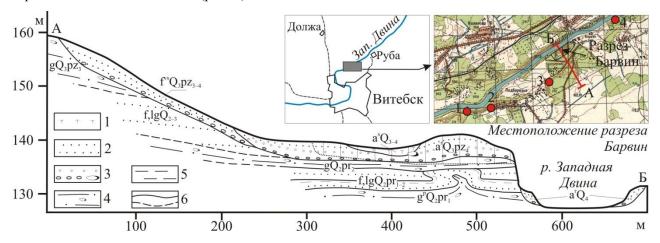
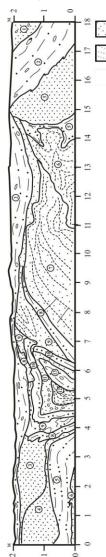


Рисунок 1 — Строение надпойменной террасы левого берега долины Западной Двины у д. Барвин 1 — торф, 2 — пески тонко- мелкозернистые, 3 — пески средне- крупнозернистые с прослоями и линзами песчано-гравийной смеси и валунами, 4 — супеси и суглинки моренные, 5 — супеси и алевриты, 6 — границы слоёв точные и предполагаемые. Цифрами на врезке обозначены разрезы: 1 — Витебская ГЭС, 2 — Подберезье, 3 — карьер «Барвин», 4 — Кашино


В результате проведённых работ установлено, что надпойменная терраса является цокольно-аккумулятивной. Мощность аллювиальных отложений составляет 4–6 м. Эти аккумуляции относятся к двум фациям – руслового и старичного аллювия. Старичный аллювий представлен линзой торфа черного, тёмно-серого цвета, рыхлого, с обилием древесных остатков, с примесью песка. Торф залегает на песках тонко- мелкозернистых, глинистых, серых, тёмно-серых, с сизоватым оттенком, уплотнённых. Осадки старичной фации соответствуют финальной стадии развития площадки террасы в позднем плейстоцене – голоцене. Общие размеры линзы – около 0,15 × 0,1 км, а мощность составляет 1,5–2,3 м.

Русловой аллювий представлен переслаиванием окатанного обломочного материала разных размеров с ярко выраженной параллельной и линзовидной слоистостью. Слоистость имеет выдержан-

¹ Геологический институт КНЦ РАН, ул. Ферсмана 14, 184209 Апатиты, Российская Федерация; vashkov@geoksc.apatity.ru ² Белорусский государственный университет, географический факультет, пр. Независимости 4, 220050 Минск, Республика Беларусь

ное падение в западных и юго-западных румбах. Нижняя часть разреза построена преимущественно инстративным аллювием: валунно-галечными смесями и песчано-гравийно-галечным материалом. Отдельные валуны достигают 2,5—3 м в диаметре. Выше по разрезу аккумуляции базального горизонта сменяются осадками субстративного аллювия с преобладанием песчаной и гравийной фракции. Мощность аллювия русловой фации достигает 6—7 м.

3 3 4 5 5 6 5 7

Рисунок 2 — Дислоцированные интерстадиальные днепровско-сожские отложения у д. Барвин

1 – песок крупнозернистый, 2 – песок среднезернистый, 3 – песок мелкозернистый, 4 – песчаногравийная смесь, 5 – супесь озёрно-ледниковая, 6 – супесь моренная, 7 – суглинок моренный, 8 – направление падения слоистости, 9 – сколы и трещины, 10 – нумерация слоёв

Цоколь террасы представлен среднеплейстоценовыми ледниковыми отложениями припятского горизонта. Их принадлежность к припятскому горизонту установлена в результате корреляции морен из цоколя террасы с размещенными на удалении до 2 км опорным разрезом муравинского межледниковья «Кашино», а также разрезами у строительной площадки Витебской ГЭС, у д. Подберезье и в карьере «Барвин», изученных нами в 2013–2016 гг. [2, 3]. В этих разрезах кровля среднеплейстоценовых отложений размещена на абсолютных отметках 132–134 м, что в целом соответствует кровле припятского горизонта в разрезе террасы у д. Барвин (134,5–135 м).

Припятский ледниковый горизонт разреза у д. Барвин вскрывается в разрезе канавы на дне котлована длиной 50 м и глубиной до 2,5 м. Горизонт представлен ледниковыми отложениями днепровского и сожского подгоризонтов и разделяющими их межстадиальными аккумуляциями. Сожский и днепровский подгоризонты представлены моренными супесями и суглинками бледно-бурыми, коричневобурыми, плотными, грубыми. Опробование грубообломочной фракции этих морен показало сходство их петрографического состава с среднеплейстоценовыми моренами региона [1]. Насыщенность морен местными и транзитными осадочными породами ниже, чем у березинской и выше, чем у поозёрской морены. Интересно, что сожская и днепровская морены разреза имеют близкий состав с доминирующей ролью известняков (36 %), доломитов (20 %), гранитов красноцветных (16 %) (табл.).

Морены разреза разделяются интерстадиальными аккумуляциями днепровско-сожского возраста. Они представлены песками тонко- мелкозернистыми, разнозернистыми, алевритами и супесями мощностью около 4 м. Пески и алевриты имеют жёлтый, жёлто-серый, тёмно-серый цвет. Из супесей серых и тёмно-серых был произведен отбор образца на наличие органики. Но осмотр пробы Т. Б. Рыловой в 2016 г. не выявил присутствий спор, пыльцевых зёрен и прочих органогенных остатков

Межстадиальные отложения залегают субгоризонтально в северной части канавы. В её центральной части отложения значительно дислоцированы и смяты в диапировидную складку (рис. 2). В ядре складки залегают супеси моренные днепровского подгоризонта и перекрывающие их пески и песчано-гравийные отложения. В крыльях складки дислоцированы интерстадиальные днепровскосожские осадки. Складка является опрокинутой, её осевая плоскость имеет уклон от 25° до 60° и падает к северо-западу, шарнир простирается по азимуту 60°–240°. Отложения на северо-западном крыле складки залегают вертикально с разрывом вмещающих складку пород. В юго-восточном крыле складки породы залегают в опрокинутом виде, контакт с вмещающими складку отложениями в этой части разреза не установлен. Необходимо отметить, что диапировидной складке припятского возраста в рельефе надпойменной террасы соответствует валообразное поднятие высотой до 2 м.

Таблица — Сравнительная характеристика петрографического состава гравия (фракция 0,5—1 см) и гальки (фракция 1—5 см) морен разреза у д. Барвин, %

	Породы												
Морены	Осадочные					Кристаллические							
	Известняки	Доломиты	Песчаники	Аргиллиты и алевролиты	Мергели	Граниты розовые	Граниты серые	Магматические средние и основные	Гнейсы и крист. сланцы	Кварциты	Полевые шпаты	Кварц	Прочие
Барвин, слой 2	35,5	21,6	1,6	1,4	0,9	15,3	10,3	3,7	2,7	1,8	1,6	3,2	0,4
Барвин, слой 13	37,8	19,1	3,6	-	1,0	17,0	9,3	4,1	3,3	1,0	1,4	2,2	0,2
березинская	38,6	23,8	4,2	0,7	0,9	12,2	7,5	3,4	3	0,9	0,9	1,7	2,1
днепровская	36,4	22,3	2,6	0,4	2,4	16,9	6,6	4,4	2,5	1,1	1,4	2,2	0,7
сожская	33,2	21,3	3,5	1,3	2,4	20,1	7,1	3,1	2,9	1,0	1,0	3,0	0,1
поозёрская	35,4	23,8	2,4	1,3	1,3	19,8	5,9	3,5	2,8	0,8	0,7	1,9	0,3

Таким образом, были установлены особенности строения надпойменной террасы долины р. Западной Двины на отрезке её наибольшего врезания в коренные породы. Рассмотрены особенности сложного строения цоколя террасы и характер перекрывающих цоколь аллювиальных аккумуляций. Полученные результаты дополняют сведения о динамике ледника и характера гляциотектонических процессов в припятское время. Данные о строении террасы подтверждают предположение о позднепоозёрском возрасте заложения долины р. Западной Двины на отрезке д. Курино – д. Лужесно.

- 1. Гумінскі І. Л. Асаблівасці петраграфічнага складу жвірова-галечнай фракцыі з агаленняў Гралёва і Руба // Геалагічныя і палеанталагічныя даследванні кайназою Беларусі. Мн.: Навука і тэхніка, 1989. С. 27–31
- 2. Санько А. Ф., Еловичева Я. К. Отложения муравинского межледниковья в разрезе Авдеевичи Кашино Витебского района Витебской области // Материалы геологического изучения земной коры Белоруссии. Мн.: Наука и техника, 1978, С. 110–115.
- 3. *Санько А.* Φ . Неоплейстоцен северо-восточной Белоруссии и смежных районов РСФСР. Мн.: Наука и техника, 1987. 187 с.

УДК 561.56 (476)

О ГРАНИЦЕ ДНЕПРОВСКОЙ СТАДИИ ПРИПЯТСКОГО ОЛЕДЕНЕНИЯ В ПРИГРАНИЧНОМ ПОЛЬСКО-БЕЛОРУССКОМ РЕГИОНЕ

А. К. Карабанов¹, Л. Маркс^{2, 5}, Е. Нитихорук³, М. А. Богдасаров⁴, О. И. Грядунова⁴, Н. Ф. Гречаник⁴, Т. Крживицки², А. Маецка⁵, С. О. Мамчик⁶, К. Похоцка-Шварц², И. Рихель², Б. Воронко⁴, Т. Б. Рылова¹, Л. Збуцки³, Л. Новацки², М. Пиелах²

¹ Институт природопользования НАН Беларуси, ул. Ф. Скорины 10, 220114 Минск, Республика Беларусь; rylova@ecology.basnet.by

Трансграничная корреляция стратиграфических подразделений и границ оледенений является важным аспектом исследований четвертичных отложений в Европе. В 2009–2011 гг. в рамках поль-

² Государственный геологический институт − Государственный исследовательский институт, Rakowiecka 4, 00-975 Warszawa, Polska

³ Государственная высшая школа им. Иоанна Павла II, Sidorska 95/97, 21-500 Biała Podlaska, Polska ⁴ Брестский государственный университет, географический факультет, бульв. Космонавтов 21, 224016 Брест, Республика Беларусь

⁵ Варшавский университет, Krakowskie Przedmieście 26/28, 00-927 Warszawa, Polska ⁶ Министерство природных ресурсов и охраны окружающей среды, ул. Коллекторная 10, 220004 Минск, Республика Беларусь