Секция 5. Влияние излучений на структуру и свойства покрытий

ВНУТРЕННИЕ НАПРЯЖЕНИЯ В CrAIN И TIAIN ПОКРЫТИЯХ, ОСАЖДАЕМЫХ ПРИ ПЛАЗМЕННО-ИММЕРСИОННОЙ ИМПЛАНТАЦИИ ИОНОВ

А.И. Калиниченко, С.С. Перепелкин, В.Е. Стрельницкий Национальный научный центр «Харьковский физико-технический институт» Академическая 1, 61108 Харьков, Украина, streInitskij@kipt.kharkov.ua

В модели нелокального термоупругого пика низкоэнергетического иона анализируется процесс формирования внутренних напряжений о в многокомпонентном покрытии, осаждаемом из смешанного пучка разнозарядных ионов. Проведен расчет зависимости о от потенциала смещения *U* в покрытии Cr_{1-x}Al_xN, (Ti_{1-x}Al_xN) при различном содержании х ионов AI в осаждаемом пучке. Показано, что в режиме импульсного потенциала смещения внутренние напряжения в осаждаемом покрытии Cr_{1-x}Al_xN, (Ti_{1-x}Al_xN) увеличиваются (уменьшаются) при возрастании х. Определены условия, при которых результаты вычислений согласуются с экспериментальными данными.

Введение

Покрытия на основе нитридов Ті и Сr с улучшенными эксплуатационными характеристиками (твердостью, износоустойчивостью, коррозионной и радиационной стойкостью) формируются, в основном, методами вакуумнодугового и плазменно-ионного осаждения [1]. В процессе осаждения возникают внутренние напряжения сжатия, которые, с одной стороны, повышают твердость покрытий, но, с другой могут вызывать их разрушение. Определение величины внутренних напряжений И ИХ зависимости от параметров процесса осаждения, теплофизических характеристик покрытий необходимо для выбора оптимального режима осаждения и контроля качества образующихся покрытий.

В [2] была предложена модель, согласно которой внутренние напряжения формируются в результате генерации напряжений за счет дефектообразования при имплантации ионов и релаксации напряжений в ходе миграции дефектов в точечных тепловых пиках (ТТП) ионов. Полученная в рамках модели формула дала качественное объяснение наблюдающейся зависимости напряжений от энергии ионов и удовлетворительное количественное согласие с результатами экспериментов.

Однако использование модели ТТП для описания релаксации механических напряжений представляется не вполне корректным, поскольку в модели не учитывается характер взаимодействия имплантируемого иона с атомами материала мишени, определяющий начальные размеры и энергосодержание образующегося теплового пика. Вследствие этого модель ТТП принципиально не может объяснить экспериментально наблюдаемую зависимость возникающих внутренних напряжений от температуры осаждения T₀, а ее согласие с экспериментальными данными достигается при величинах энергии активации миграции дефектов и = 3-14 эВ, значительно превосходящих известные значения для процессов миграции дефектов. Кроме того, формула, полученная в [2] на основе модели ТТП, не учитывает многокомпонентность и разнозарядность осаждаемых ионов и режим осаждения покрытия.

В [3-4] предложена модификация формулы для расчета внутренних напряжений, основанная на модели нелокального термоупругого пика (НТП) иона – перегретой и перенапряженной области нанометровых размеров, возникающей вокруг траектории иона в материале покрытия в результате термализации фононных потерь иона. Полученная формула позволяет рассчитывать напряжения в однокомпонентных покрытиях, осаждаемых из потоков ионов с различной зарядностью в режимах постоянного и импульсного потенциалов и при различных температурах осаждения.

В настоящей работе предложена обобщенная формула для расчета внутренних напряжений в многокомпонентных покрытиях при осаждении из смешанного пучка ионов. Приведены результаты расчетов внутренних напряжений σ в покрытиях Cr_{1-x}Al_xN и Ti_{1-x}Al_xN, осаждаемых вакуумнодуговым методом из смешанных пучков ионов Cr+Al и Ti+Al с различным содержанием Al в режиме импульсного потенциала на подложке и их сравнение с экспериментальными данными.

Внутренние напряжения в нитридном покрытии, осаждаемом из смешанного пучка ионов

Обобщенная формула для расчета внутренних напряжений в многокомпонентных покрытиях при осаждении из смешанного пучка ионов имеет вид [5]:

$$\sigma(U,T_{0}) = \frac{AE_{Y}}{1-\Pi} \frac{\sum_{j=1}^{m} \sum_{i=1}^{n} \chi_{ij} \left[ft_{\rho} \zeta_{j} \left(i \left(U + U_{f} + E_{0ij} \right) \right) + \left(1 - ft_{\rho} \right) \zeta_{j} \left(i \left(U_{1} + U_{f} + E_{0ij} \right) \right) \right]}{1 + \sum_{j=1}^{m} \sum_{i=1}^{n} \chi_{ij} \left[ft_{\rho} w_{j} \left(i \left(U + U_{f} + E_{0ij} \right), T_{0} \right) + \left(1 - ft_{\rho} \right) w_{j} \left(i \left(U_{1} + U_{f} + E_{0ij} \right), T_{0} \right) \right]} \right].$$
(1)

Здесь Е_Y и П – модуль Юнга и коэффициент Пуассона материала мишени, t_p - длительность

прямоугольного импульса потенциала с амплитудой U, f - частота следования импульсов, U_f -

12-я Международная конференция «Взаимодействие излучений с твердым телом», 19-22 сентября 2017 г., Минск, Беларусь 12th International Conference "Interaction of Radiation with Solids", September 19-22, 2017, Minsk, Belarus

териаперы и пучка ионов го пи-Обобщенная формула для плавающий потенциал, U₁ – потенциал, подаваемый на подложку между импульсами, χ_{ij} и E_{0ij} – доля ионов сорта ј с зарядом і (в единицах заряда протона) и приведенная начальная энергия, соответственно. Суммирование проводится по т сортам и по п зарядовым состояниям ионов, причем $\sum_{i} \chi_{ij} = 1$. Предполагается, что в осаждаемом

потоке присутствуют только ионы, и нет нейтральных атомов. Функция ζ_j задает зависимость деформации материала покрытия, вызванной дефектообразованием ионами *j*-го сорта, от энергии ионов *E*. Функция

$$w_j(E,u,T_0) = n_0 v_0^{T_c} V_j(t,E) e^{-\frac{u}{k_B T_j(t,E,T_0)}} dt \qquad (2)$$

задает количество термоактивированных переходов в НТП иона ј-го сорта при температуре мишени То. Здесь kв – постоянная Больцмана, no – концентрация атомов мишени, и - частота колебаний атома, T_c - время жизни НТП, $V_i(t, E)$ и $T_i(t, E, T_0)$ - объем НТП иона j-го сорта с энергией Е в момент времени t и температура в HTП; T₀ температура осаждения. Функции $V_i(t,E)$, $T_{i}(t, E, T_{0})$ и ζ_{i} вычислялись с использованием программного кода SRIM2000 [6] и учетом характерных значений тепловых характеристик (теплоемкости, теплопроводности) для покрытий микронной толщины из CrAIN и TiAIN. Параметр А и значение энергии активации миграции дефектов и определялись из сравнения теоретической зависимости с данными эксперимента.

При расчете внутренних напряжений в осаждаемом покрытии необходимо учитывать, что температура осаждения Т₀ изменяется с энергией осаждаемых ионов Е. В линейном приближении выражение для температуры подложки с учетом многокомпонентности и разнозарядности потока осаждаемых ионов можно представить в виде:

$$T_{0}(U) = T_{00} + \lambda \sum_{j=1}^{m} \sum_{i=1}^{n} \chi_{ij} i \left[ft_{p} E_{ij} + (1 - ft_{p}) E_{1ij} \right], \quad (3)$$

где $E_{ij} = i \left(U + U_f + E_{0ij} \right)$, $E_{1ij} = i \left(U_1 + U_f + E_{0ij} \right)$, T_{00} – температура необлучаемой подложки.

Параметр λ пропорционален плотности потока осаждаемых ионов, обратно пропорционален коэффициенту теплопроводности материала мишени мишени и зависит также от конструкционных особенностей установки по осаждению покрытия. Величина λ подбирается из условия равенства температуры осаждения ее экспериментальному значению при известном потенциале смещения U.

Результаты и их обсуждение

Выражение (1) позволяет определить значение внутреннего напряжения сжатия σ в покрытиях, осаждаемых из смешанного потока ионов в режиме постоянного и импульсного потенциала расчет напряжений в покрытиях Cr_{1-x}Al_xN, (Ti_{1-x}Al_xN) проводился для прямоугольного импульса при следующих параметрах осаждения и осаждаемых покрытий: f = 12 (24) кГц, t_p=12 (5) мкс, T₀₀=350 K, λ = 0,26 град/эВ (0,28 град/эВ), П = 0,3(0,23). Значения E_{Y} изменяются в зависимости от содержания AI и брались для Cr_{1-x}Al_xN покрытий

Рис. 1. Внутренние напряжения, рассчитанные при различном содержании x ионов AI, в покрытиях $Cr_{1-x}Al_xN$ (рис.1а) и $Ti_{1-x}Al_xN$ (рис. 1б), осаждаемых в режиме импульсного потенциала. Кривые 1 - 4 соответствуют x = 0; 0.33; 0.5; 0.67, соответственно. Светлые кружки - экспериментальные данные для $Cr_{0.5}Al_{0.5}N$ (рис. 1а) [7] и TiN (рис. 16) [8]

из [7]; для Ti_{1-x}Al_xN покрытий из [8]. Плотность покрытий и теплоемкость рассчитывались с учетом содержания Al. Для определения значения энергии активации миграции дефектов *и* расчетные значения напряжений для покрытия TiN, (Cr_{0.5}Al_{0.5}N), осаждаемого из потока ионов Ti, (Cr_{0.5}+Al_{0.5}), сравнивались с данными экспериментов. Значения параметров _{Xii} и E_{0ii} для покрытий брались из монографии [9]. Относительное содержание x ионов AI выбиралось в пределах $0 \le x < 0.7$, обеспечивающих кубическую кристаллическую структуру осаждаемого покрытия.

На рис. 1 приведена зависимость внутренних напряжений сжатия от потенциала смещения *U* в покрытиях Cr_{1-x}Al_xN и Ti_{1-x}Al_xN с различным со-

12-я Международная конференция «Взаимодействие излучений с твердым телом», 19-22 сентября 2017 г., Минск, Беларусь 12th International Conference "Interaction of Radiation with Solids", September 19-22, 2017, Minsk, Belarus держанием компонентов (кривые 1-4), осаждаемых в импульсном режиме.

Анализ показал, что наилучшее согласие расчетных кривых с данными экспериментов достигается: в покрытии $Cr_{0.5}Al_{0.5}N$ при энергии активации миграции дефектов и = 0.77 эВ (кривая 3, рис. 1а) [7]; в покрытии ТіN при энергии активации миграции дефектов и = 0.56 эВ (кривая 1, рис. 1б) [8]. Для покрытия ТiN, ($Cr_{0.5}Al_{0.5}N$) максимум кривой напряжений σ_{max} = 10 ГПа, (6,5 ГПа) достигается при U = 0,5 кВ, (1 кВ), в соответствии с экспериментальными данными.

Полученные в результате сравнения теоретических кривых с данными экспериментов значения энергии активации u<1 эВ согласуются с предположением, что возникновение внутренних напряжений в покрытии при плазменно-ионном осаждении связано с появлением и последующей миграцией междоузельных дефектов.

Как видно из рис. 1а, при увеличении содержания AI в покрытии Cr_{1-x}Al_xN максимум напряжений растет и сдвигается в сторону больших величин потенциала смещения U. При x = 0 (покрытие из CrN) максимальное значение напряжения оказывается равным $\sigma_{max} \sim 5.6$ ГПа при U ~ 0.44 кВ. При максимальном содержании AI, соответствующем x = 0.67 (трехкомпонентное покрытие Cr_{0.33}Al_{0.67}N), расчет дает $\sigma_{max} \sim 7.2$ ГПа при U ~ 1.7 кВ.

Напротив, для покрытия Ti_{1-x}Al_xN (см. рис. 1б) внутреннее напряжение падает при увеличении содержания AI от 0 до 0.67. При x = 0 (покрытие из TiN) максимальное значение напряжения равно $\sigma_{max} \sim 10$ ГПа при U ~ 0.5 кВ. При x = 0.67 (трехкомпонентное покрытие Ti_{0.33}Al_{0.67}N) расчет дает $\sigma_{max} \sim 6.4$ ГПа при U ~ 0.8 кВ. Такое различие в поведении внутренних напряжений σ для покрытий Cr_{1-x}Al_xN и Ti_{1-x}Al_xN с изменением x связано с различной зависимостью от x исходных параметров, используемых при расчетах, и прежде всего, модуля упругости E_Y. Так, для покрытия Cr_{1-x}Al_xN величина E_Y возрастает с ростом x, тогда как для Ti_{1-x}Al_xN она падает.

Заключение

Предложена формула для расчета внутренних напряжений в многокомпонентных покрытиях, осаждаемых из смешанного потока ионов, выведенная в рамках модели нелокального термоупругого пика низкоэнергетического иона. Проведен расчет внутренних напряжений в нитридных покрытиях Ti_{1-x}Al_xN, (Cr_{1-x}Al_xN), осаждаемых из смешанного потока ионов с различным содержанием ионов AI в режиме импульсного потенциала. Результаты расчетов внутренних напряжений в покрытии TiN, (Cr_{0.5}Al_{0.5}N), полученные при энергии дефектов активации миграции u = 0.56 эВ, (u = 0.77 эВ) согласуются с экспериментальными данными. Показано, что в режиме импульсного потенциала смещения внутренние напряжения в осаждаемых покрытиях Cr_{1-x}Al_xN, (Ti_{1-x}Al_xN) увеличиваются (уменьшаются) при возрастании содержания AI.

Список литературы

- 1. Погребняк А.Д., Шпак А.П., Азаренков Н.А., Береснев В.М. // УФН. 2009. Т. 179. С.35–64.
- 2. Davis C.A. // Thin Solid Films. 1993. v.226. P.30-34.
- 3. Kalinichenko A.I., Perepelkin S.S., Strel'nitskij V.E. // DRM. 2010. V. 19. P. 996-998.
- Kalinichenko A.I., Perepelkin S.S., Strel'nitskij V.E. // Problems of atomic science and technology. Series: Plasma Physics (21). 2015. № 1. P. 252-255.
- Kalinichenko A.I., Kozionov S.A., Strel'nitskij V.E. // Proble ms of atomic science and technology. Series: Vacuum, pure materials, superconductors. 2016. №1. P. 149 -152.
- Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of lons in Solids. N Y.: Pergamon Press, 1996. 297 p.
- Васильев В.В., Лучанинов А.А., Решетняк Е.Н., Стрельницкий В.Е. и др. // ЖФИП. 2016. Т. 1. С. 62-80.
 Akkaya S.S., Vasyliev V.V., Reshetnyak V.V., et al. // Surf. Coat. Technol. 2013. V. 236. P. 332-340.
- Аксенов И.И., Андреев А.А., Белоус В.А. и др. Вакуумная дуга: источники плазмы, осаждения покрытий, поверхностное модифицирование. К.: Наукова думка. 2012. 727с.

INTRINSIC STRESSES IN CrAIN AND TIAIN COATINGS PRODUCED BY PLASMA IMMERSION ION IMPLANTATION

A.I. Kalinichenko, S.S. Perepelkin, V.E. Strel'nitskij National Science Center "Kharkov Institute of Physics and Technology", 1 Akademicheskaya str., 61108 Kharkov, Ukraine, strelnitskij@kipt.kharkov.ua

In the model of nonlocal thermoelastic peak of low-energy ion, the process of intrinsic stress σ formation in multicomponent coating deposited from mixed beam of differently charged ions is analyzed. Intrinsic stress calculation depending on bias potential U in Cr_{1-x}Al_xN, (Ti_{1-x}Al_xN) coating is carried out at different content x of Al ions in deposited beam. It is shown that intrinsic stress in coating Cr_{1-x}Al_xN, (Ti_{1-x}Al_xN) increases (decreases) with x in case of the pulsed bias potential. The conditions when the results of the calculations are consistent with the experimental data are determined.