ВЛИЯНИЕ КОМПЛЕКСНОГО ОБЛУЧЕНИЯ СИЛЬНОТОЧНЫМИ ИМПУЛЬСНЫМИ ЭЛЕКТРОННЫМИ ПУЧКАМИ И УПРОЧНЕНИЯ ПОВЕРХНОСТНЫМ ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ НА УСТАЛОСТНУЮ ПРОЧНОСТЬ МИШЕНЕЙ ИЗ ТИТАНОВОГО СПЛАВА ВТ18У

В.А. Шулов¹⁾, А.Д. Теряев²⁾, Д.А. Теряев¹⁾, Г.Г. Ширваньянц¹⁾

¹⁾Московский авиационный институт (государственный технический университет),

Волоколамское шоссе 4, 125993 Москва, Россия, shulovva@mail.ru

²⁾ММП имени В.В. Чернышева, Вишневая ул. 7, 123362 Москва, Россия, teryaev a@avia500.ru

Исследовано влияние комплексной обработки сильноточным импульсным электронным пучком и ультразвукового упрочнения на структуру, остаточные напряжения, шероховатость и усталостную прочность модельных образцов из сплава ВТ18У. Показано, что применение разрабатываемой комбинированной технологии модифицирования СИЭП с последующим ультразвуковым упрочнением приводит к повышению предела выносливости образцов-имитаторов лопаток не менее чем на 10 %.

Введение

Целью работы являлось экспериментальное доказательство целесообразности проведения комплексной обработки острых кромок, корыта и спинки лопаток компрессора высокого давления, включающей в себя облучение кромок сильноточными импульсными электронными пучками (СИЭП) и ультразвуковое упрочнение (УЗУ) корыта и спинки.

Облучение кромок сильноточным импульсным пучком электронов и упрочнение спинки и корыта ультразвуковой обработкой может привести к повышению предела выносливости.

Материалы, оборудование и методики исследования

В качестве объектов исследования в настоящей работе использовались образцы из сплава ВТ18У [1], изготовленные по серийной технологии производства лопаток компрессора ГТД (рис. 1). Состояние материала в поверхностных слоях лопаток исследовалось методами: ренгеноструктурного анализа, просвечивающей электронной микроскопии и оптической металлографии. Обработка мишеней СИЭП [2] была реализована в ускорителе "Геза-ММП" (рис. 2) в режиме плавления: энергия электронов - 120 кэВ; длительность импульса - 30 мкс; плотность энергии в пучке — 18-20 Дж/см²; площадь поперечного сечения пучка — 80 см²; неоднородность плотности по сечению пучка — менее 10 %.).

Экспериментальные данные и их обсуждение

В рассматриваемом случае поверхностной модификации пучком электронов кристаллизация расплавленного слоя будет протекать в поверхностном слое толщиной 20-30 мкм (рис. 3). Некоторые результаты исследования представлены на рис. 4 и 5, а также в таблице 1.

Из этих данных следует, что комплексная обработка приводит к небольшому снижению шероховатости и формированию остаточных сжимающих напряжений, что обеспечивает повышение предела выносливости (таблица 1).

Рис. 1. Внешний вид усталостных образцов с острыми кромками из сплава BT18У

Рис. 2. Внешний вид установки Геза-ММП для облучения СИЭП

Рис. 3. Микроструктура в поверхностном слое острых кромок образцов после облучения СИЭП

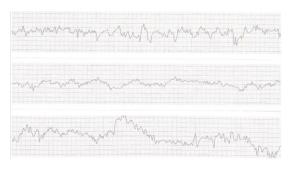


Рис. 4. Профилограммы шероховатости поверхности: а — исходная полированная $R_a = 0.14$ мкм., $R_z = 1.15$ мкм; б — после обработки СИЭП (W=20 Дж/см², 4 имп., $\tau = 40$ мкс.) $R_a = 0.11$ мкм., $R_z = 0.82$ мкм; в — после комбинированной обработки: СИЭП с последующим ультразвуковым упрочнением $R_a = 0.3$ мкм., $R_z = 2.55$ мкм.

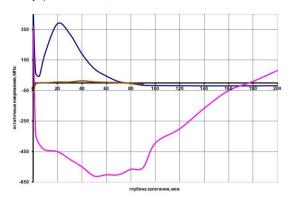


Рис. 5. Усредненные эпюры остаточных напряжений после: 1 – полирования и вакуумного отжига; 2 – обработки СИЭП; 3 – ультразвукового упрочнения

Из этих данных следует, что комплексная обработка приводит к небольшому снижению шероховатости и формированию остаточных сжимающих напряжений, что обеспечивает повышение предела выносливости (Таблица 1).

Таблица 1. Результаты усталостных испытаний

Номер	Обработка, нагрузка,	Число циклов
образца	МПа	до разрушения
1	Исходный, 340	1.4·10 ⁵
2	Исходный, 320	4.7·10 ⁶
3	Исходный, 300	>2·10 ⁷
4	Исходный, 320	>1.3·10 ⁷
5	Исходный, 300	>2.·10 ⁷
6	СИЭП, 300	2.3·10 ⁶
7	СИЭП, 280	1.7·10 ⁵
8	СИЭП, 280	4,15·10 ⁶
9	СИЭП, 260	>2·10 ⁷
10	СИЭП, 260	1.72·10 ⁷
11	СИЭП, УЗУ, 300	1.96·10 ⁷
12	СИЭП, УЗУ, 300	>2.·10 ⁷
13	СИЭП, УЗУ, 320	6.03·10 ⁶
14	СИЭП, УЗУ, 320	>2·10 ⁷
15	СИЭП, УЗУ,340	>2·10 ⁷

Заключение

Усталостные испытания образцовимитаторов пера лопатки показали, что обработка с применением разрабатываемой комбинированной технологии модифицирования СИЭП с последующим ультразвуковым упрочнением приводит к повышению предела выносливости образцов-имитаторов пера лопаток не менее чем на 10 %.

Список литературы

- 1. *Шулов В.А., Новиков А.С., Энгелько В.И.* Сильноточные электронные импульсные пучки для авиационного двигателестроения. М.: Изд-во Артек, 2012. 292 с.
- 2. Engelko V, Yatsenko B., Mueller G., Bluhm H.// J. Vacuum. 2001. V. 62. P. 211-214.

EFFECT OF COMPLEX IRRADIATION WITH INTENSE PULSED ELECTRON BEAMS AND STRENGTHENING BY SURFACE PLASTIC DEFORMATION ON FATIGUE STRENGTH OF VT18U TITANIUM ALLOY

V.A. Shulov¹⁾, D.A. Teryaev¹⁾, A.D. Teryaev²⁾, G.G. Shirvan'yantz

¹⁾Moscow Aviation Institute, 4 Volokolamskoye shosse, 125993 Moscow, Russia, shulovva @ mail. ru

²⁾Chernyshev Machine Building Enterprise, 7 Vishnevaya Street, 123362 Moscow, Russia, teryaev a @avia500.ru

The present paper reviews the fatigue experimental results after complex irradiation with intense pulsed electron beams and strengthening by surface plastic deformation.