Accepted Manuscript

Monoclinic bismuth vanadate band gap determination by photoelectrochemical spectroscopy

Mikalai V. Malashchonak, Eugene A. Streltsov, Dzianis A. Kuliomin, Anatoly I. Kulak, Alexander V. Mazanik

PII: \$0254-0584(17)30670-3

DOI: 10.1016/j.matchemphys.2017.08.053

Reference: MAC 19951

To appear in: Materials Chemistry and Physics

Received Date: 16 October 2016
Revised Date: 16 August 2017
Accepted Date: 20 August 2017

Please cite this article as: M.V. Malashchonak, E.A. Streltsov, D.A. Kuliomin, A.I. Kulak, A.V. Mazanik, Monoclinic bismuth vanadate band gap determination by photoelectrochemical spectroscopy, *Materials Chemistry and Physics* (2017), doi: 10.1016/j.matchemphys.2017.08.053.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Monoclinic bismuth vanadate band gap determination by

photoelectrochemical spectroscopy

Mikalai V. Malashchonak^a, Eugene A. Streltsov^a, Dzianis A. Kuliomin^b,

Anatoly I. Kulak^b, Alexander V. Mazanik^{a,*}

^aBelarusian State University, Nezalezhnastsi Av. 4, 220030 Minsk, Belarus

^bInstitute of General and Inorganic Chemistry, National Academy of Sciences of Belarus,

Surganov St. 9/1, 220072 Minsk, Belarus

E-mail: mazanikalexander@gmail.com; Fax: +375-17-2095445; Tel: +375-29-2769624.

Highlights

- Optical band gap of monoclinic BiVO₄ was determined by photocurrent spectroscopy;
- Indirect optical transitions are characterized by the energy E_{gi} =2.44 eV;
- Direct optical transitions are characterized by the energy $E_{\rm gd}$ =2.63 eV;

Abstract

The optical band gap (E_{\circ}) of the monoclinic bismuth vanadate BiVO₄ (scheelite) was determined by photoelectrochemical (photocurrent) spectroscopy. The relevance of this study is related to an existing ambiguity in $E_{\rm g}$ determination, which is due to possible distinction in preparation technique of this compound (and, hence, difference in grain size, crystallinity, film thickness, etc.), as well as realization of additional optical absorption mechanisms unrelated to excitation of electrons from the valence band to the conduction band. Using analysis of the Incident Photonto-current Conversion Efficiency (IPCE), which minimizes a contribution of impurity-related and other kinds of absorption, it was demonstrated that BiVO₄ scheelite is primarily indirect

band gap semiconductor, where indirect optical transitions are characterized by the energy gap $E_{\rm gi}$ =2.44 eV, whereas for direct optical transitions energy gap is $E_{\rm gd}$ =2.63 eV.

Keywords:

Bismuth vanadate; Band gap; Photocurrent spectroscopy.

1. Introduction

In the last decade the interest in optical properties of monoclinic bismuth vanadate has significantly increased due to its high activity in photocatalytic [1-7] and photoelectrochemical (PEC) [6-10] processes. An important advantage of monoclinic BiVO₄ over classical photocatalytic oxides (TiO₂, ZnO, WO₃) is its smaller band gap (E_g) which allows photoinduced processes under irradiation not only by UV but also by the visible part of the spectrum. $E_{\rm g}$ values of monoclinic BiVO₄ estimated from the long-wavelength edge of the diffuse reflectance spectra are in the range 2.33–2.50 eV [1,3,8,11]. The band gap for direct optical transitions ($E_{\rm gd}$) calculated from the diffuse reflectance spectra using the Kubelka-Munk function by some authors [5,6,12-14] was 2.45–2.46 eV, while higher values were reported by other authors: 2.48 eV [15], 2.52–2.56 eV [16], 2.60 eV [17], 2.68 eV [18]. The information concerning the values of indirect optical transitions band gap (E_{gi}) is more limited; in particular, according to G. Li et al. [19], E_{gi} value is 2.20 eV; O.F. Lopez et al. determined E_{gi} to be in the range from 2.35 to 2.42 eV [20], while from the results of P. Madhusudan et al. [4] $E_{\rm gi}$ values are 2.34 and 2.13 eV for polycrystalline and porous BiVO₄, respectively. Despite the fact that the vast majority of workers determined $E_{\rm g}$ values for the direct optical transitions, recently it has been proved conclusively that monoclinic BiVO₄ is indirect-gap semiconductor with E_{gi} value equal to 2.52 eV [18].

The ambiguity in determining the band gap values and optical transitions type in monoclinic BiVO₄ is not only due to the difference in the preparation technique (accordingly,

differences in crystallite size, the ordering degree, film thickness, etc.), but also due to the presence of additional mechanisms of optical absorption without excitation of electrons from the valence band to the conduction band of semiconductor [21]. In particular, this kind of parasitic absorption in hydrogenated BiVO₄ was observed at a wavelength $\lambda > 530$ nm (photon energy hv < 2.34 eV) without contribution to photogeneration processes responsible for PEC activity of BiVO₄ photoanode [22].

Considering the foregoing discussion, in the present study the photocurrent spectroscopy has been used to determine the band gap of monoclinic BiVO₄. Photocurrent flows as a result of the generation of electron-hole pairs due to the interband absorption of photons with energy $hv \ge E_g$ with the subsequent involvement of the photogenerated charge carriers in a photoelectrochemical reactions. The advantage of this method of $E_{\rm g}$ determination in comparison with classical optical methods is the minimum impact of other absorption mechanisms besides the fundamental interband transitions in the photocurrent spectrum.

At the same time, the Incident Photon-to-current Conversion Efficiency (IPCE, Y) evaluated from photocurrent spectrum can be considered as $Y(\lambda)=Y_1(\lambda)\cdot Y_2(\lambda)$, where $Y_1(\lambda)$ is the fraction of incident photons resulted in electron-hole pair generation (proportional to the absorption coefficient near the absorption edge), and $Y_2(\lambda)$ is the fraction of the photogenerated charge carriers participating in photoelectrochemical reactions (determined by recombination losses, i.e. by relation between film thickness, diffusion length, surface recombination rate and depth of photocharges generation) [23]. It is obvious that spectral dependence of Y_2 can distort the obtained $E_{\rm g}$ value. Recently it has been shown that the photocurrent generated on BiVO₄ is not limited by surface reaction kinetics, but by surface recombination [24]. Therefore, to verify the correctness of E_g determination from IPCE spectra, it is necessary to compare results of E_g calculation obtained under different recombination impact. Such variation can be achieved by changing the film permeability for electrolyte, as well as photocharge generation depth. So, the

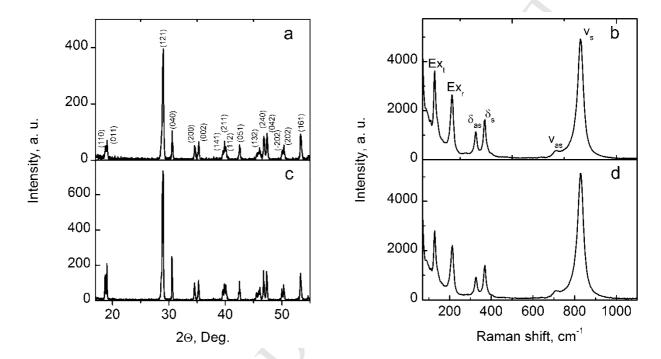
films with different porosity have been studied and different geometries of their illumination have been used.

2. Experimental

BiVO₄ film electrodes were prepared by spin-coating (3000 rpm) of BiVO₄ colloidal solution on optically transparent substrate with a layer of electrically conductive fluorine-doped tin oxide (FTO). The colloidal solution was prepared by mixing of 0.75 mol/L Bi(NO₃)₃ and 0.075 mol/L of NH₄VO₃ aqueous solutions taken in a volume ratio of 1:10 followed by centrifugation, 5 times washing with distilled water and ultrasonical dispersing (44 kHz, 10 minutes) with the addition of 30% aqueous ammonia solution (1:100 per volume) as a colloid stabilizer. To increase the porosity of BiVO₄ films, a 10% solution of polyvinyl alcohol (PVA) was added to BiVO₄ colloid in a ratio of 1:1 by volume. According to the adsorption analysis (Brunauer–Emmett–Teller method [25], N₂ adsorption at 77 K, ASAP 2020 surface area and porosity analyser, Micromeritics, USA), the addition of a pore-forming PVA increases the specific surface of the film from 3.2 to 5.8 m²/g and a specific pore volume from 0.006 to 0.011 cm³/g. Hereafter, the BiVO₄ films synthesized without and with PVA will be referred as "dense" and "porous", respectively.

The heat treatment of prepared films in air at 450 °C for 2 hours resulted in the formation of monoclinic crystal structure of BiVO₄ according to XRD and Raman spectroscopy (see below). From SEM results, the deposited BiVO₄ films were found to have a thickness of several hundred nanometers. These films are composed of rounded or elongated particles with a relatively small area of contact with each other (Fig. S1a). The addition of PVA to the suspension results in the subsequent partial fusion of BiVO₄ particles (Fig. S1b). Despite such fusion of particles, the specific surface and pore volume increases by 1.8 – 2 times due to the formation of an additional porous during the thermal oxidation of PVA additive.

XRD patterns were taken in the Bragg-Brentano geometry with a Bruker D8 Advance diffractometer using Cu K α radiation. The average size (r) of crystallites was evaluated by the Scherrer formula from the half-width of the XRD peak corrected for the instrumental broadening: $r = 0.9 \lambda_{K\alpha}/B_{2\Theta} \cos\Theta$, where $\lambda_{K\alpha}$ is 0.15406 nm for copper anode, $B_{2\Theta}$ is the full width at half-maximum of diffraction peak (2Θ scale, in radians).


Raman spectra were recorded at room temperature in the range of Raman shifts from 70 to 2400 cm⁻¹ using a Nanofinder HE confocal spectrometer (LOTIS TII, Belarus – Japan) equipped with a solid-state laser (λ =532 nm), 600 lines/mm grating (providing a spectral resolution better than 2.5 cm⁻¹) and a thermostated CCD camera.

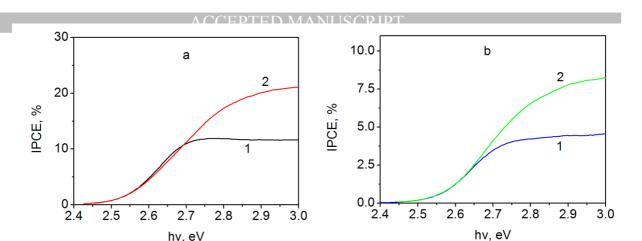
Photocurrent spectra were obtained using a setup equipped with a MDR-23U highintensity grating monochromator (spectral resolution 1 nm), a halogen lamp (250 W power, color temperature of 3350 K) and a light chopper (frequency of 0.3 s⁻¹). The potential of the semiconductor electrode was controlled by a P-8 potentiostat (Elins, Russia) equipped with a three-electrode quartz cell with a saturated silver chloride reference electrode (+0.201 V vs. SHE) and a platinum auxiliary electrode. 0.1 mol/L Na₂SO₃ aqueous solution was used as electrolyte, which is optically transparent in the BiVO₄ absorption area and can effectively scavenge the photogenerated holes. High electrical conductivity of the used solution (1.44 Ω^{-1} m⁻¹ at 25 °C [26]) ensured insignificance of iR drop. IPCE was calculated from the photocurrent and the light intensity at the monochromator output measured by an OPT101P silicon photodiode (TI Burr-Brown, USA). Band-gap energies are presented as the mean value for the set of three individual samples. Standard deviation was calculated with statistical software of OriginPro 7.0 (OriginLab Corporation, USA).

Transmission and diffuse reflectance spectra were measured using an Agilent 8453 (Agilent Technologies, USA) and a Specord M40 (Carl Zeiss Jena, Germany) spectrometers, respectively, with spectral resolution about 1 nm.

3. Results and Discussion

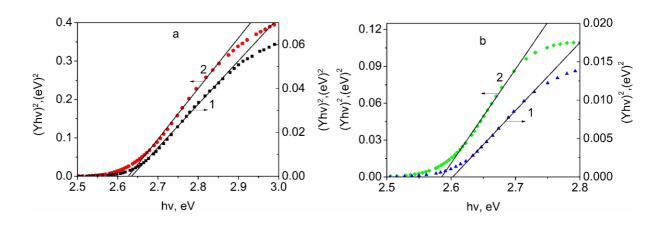
The identification of the crystal structure of the obtained BiVO₄ samples was carried out by comparison of their XRD patterns (Fig. 1a,c) and Raman spectra (Fig. 1b,d) with the literature [5,10,27-29].

Fig 1. XRD patterns (a, c) and Raman spectra (b, d) of "dense" (a, b) and "porous" (c, d) BiVO₄ films heat treated at 450 °C.


XRD patterns of the grown films demonstrate only reflexes inherent to monoclinic scheelite-type BiVO₄. From broadening of XRD reflexes using the Scherrer equation, a grain size in the BiVO₄ films can be estimated as appr. 70 nm for "dense" and appr. 85 nm for "porous" films that exceeds significantly the Bohr radius of exciton, which is calculated to be equal to ≈ 9 nm (taking into account that $m_e=0.9m_0$ and $m_h=0.7m_0$ [30], $\epsilon=68$ [31]. Thus, one can neglect electron quantum confinement effect on the IPCE spectra of the studied BiVO₄ films.

In the Raman spectra, the bands at 127 and 213 cm⁻¹ are associated with translational Ex_t and rotational Ex_r phonon vibration modes, at 325 and 367 cm⁻¹ – with asymmetrical δ_{as} and symmetrical δ_s bending vibrations in VO_4^{3-} tetrahedra, at 707 and 827 cm⁻¹ – with asymmetrical

v_{as} and symmetrical v_s stretching vibrations in VO₄ tetrahedra in BiVO₄ monoclinic scheelitetype phase [5,10,27-29]. BiVO₄ films prepared using a pore-forming additive PVA have the similar spectral band positions with a slight difference in v_s band position which is shifted to the high-frequency region by 3 cm⁻¹ and has a half-width increased from 32 to 35 cm⁻¹.


Thus, XRD and Raman spectroscopy results demonstrate that BiVO₄ films used in this study have the scheelite-type monoclinic crystal structure regardless of their porosity. It should be noted that bismuth vanadate with such structure has a higher photoelectrochemical and photocatalytic activity in the visible range with respect to other crystal modifications in particular tetragonal one [8,12,32-34].

BiVO₄ electrodes generate anodic photocurrent in Na₂SO₃ solution. Their illumination through an optically transparent FTO substrate (Fig. 2a) or through an electrolyte layer (Fig. 2b) results in slightly different photocurrent spectra. Primarily, this difference is caused by nonequilibrium carrier recombination losses on the way from the photogeneration area. No matter which side of the film was illuminated, the distance to be overcome by photoholes to reach the semiconductor/electrolyte interface is equal to a "feature size" of the films [35] (a few tens of nanometers in the present case, Fig. S1). On the contrary, the distance to be overcome by the photoelectrons depends on what side is illuminated. When electrode is illuminated through the FTO substrate, the photogeneration process is mainly concentrated near this substrate, and electrons overcome a minimal distance to achieve the FTO layer providing higher IPCE values in contrast to irradiation from the solution side (see. Fig. 2). It should be noted that BiVO₄ electrode prepared using a pore-forming additive PVA (curves 2 and 4) has a higher photocurrent in comparison with the "dense" film electrode (curves 1 and 3), which is naturally explained by more developed electrode/electrolyte interface in the case of the "porous" film.

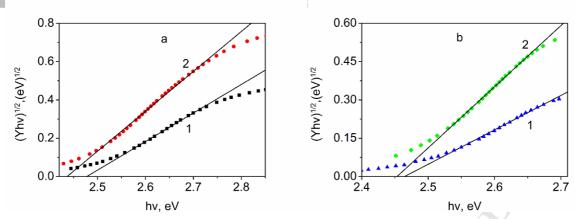


Fig. 2. IPCE spectra of the "dense" (curves 1 and 3) and "porous" (curves 2 and 4) BiVO₄ electrodes in 0.1 mol/L Na₂SO₃ aqueous solution. Electrode potential is 400 mV vs. Ag/AgCl; electrode system was irradiated from the FTO substrate side (a) and from the solution side (b).

Taking into account the proportional dependence of IPCE (Y) on the optical absorption coefficient (α) [23], the values $E_{\rm gd}$ and $E_{\rm gi}$ can be determined by extrapolation of the linear part of $(Yhv)^2-hv$ dependencies for direct and $(Yhv)^{1/2}-hv$ dependencies for indirect optical transitions on the energy axis. As it is seen from Figs. 3, 4, the linearization of the IPCE spectra is possible for $(Yhv)^2-hv$, and for $(Yhv)^{1/2}-hv$ dependencies. It indicates that both direct and indirect optical transitions occur for BiVO₄ scheelite monoclinic modification.

Fig. 3. Determination of the band gap for direct optical transitions from the spectral dependencies of IPCE for "dense" (1) and "porous" (2) BiVO₄ films; irradiation of the electrode from the FTO substrate side (a) and from the solution side (b).

Fig. 4. Determination of the band gap for indirect optical transitions from the spectral dependencies of IPCE for "dense" (1) and "porous" (2) BiVO₄ films; irradiation of the electrode from the FTO substrate side (a) and from the solution side (b).

 $E_{\rm gd}$ and $E_{\rm gi}$ values determined from the spectra are almost identical (within error) for the "dense" and "porous" BiVO₄ films and weakly depend on the illuminated side (substrate or solution) (Tab. 1). $E_{\rm gi}$ values determined from $(Yhv)^{1/2}$ —hv dependencies (Fig. 4) obtained for irradiating of the electrode from the solution side are 2.45–2.46 eV for both "dense" and "porous" BiVO₄ films. If the irradiation was carried out from the conductive substrate, $E_{\rm gi}$ value for "dense" films is slightly increased.

As it can be seen, $E_{\rm g}$ values determined from transmission (Fig. S2) and diffuse reflectance (Fig. S3) spectra are significantly smaller as compared to those extracted from photocurrent spectra, which can be related to absorption mechanisms not attributed to interband electron transitions.

Obtained data reveals that the band gap of indirect optical transitions for "dense" and "porous" $BiVO_4$ films is 0.14 eV lower than the band gap of direct optical transitions when the illumination of the electrode was carried out from the solution side. The difference between $E_{\rm gd}$ and $E_{\rm gi}$ is 0.15 eV for the "dense" and 0.19 eV for the "porous" $BiVO_4$ films when the illumination was carried out from the FTO substrate side.

Table 1The parameters of IPCE spectral dependencies linearization for BiVO₄ electrodes in a solution containing 0.1 mol/L Na₂SO₃.

Film type	Illumination side	Optical transition type	Linearization range, eV	Band gap value, eV	Determination coefficient R^2
Dense	solution	direct	2.62-2.73	2.60 ± 0.03	0.999
Porous	solution	direct	2.60-2.70	2.58±0.03	0.996
Dense	substrate	direct	2.65 - 2.86	2.63 ± 0.03	0.998
Porous	substrate	direct	2.65 - 2.85	2.63 ± 0.03	0.996
Dense	solution	indirect	2.52 - 2.68	2.46 ± 0.03	0.997
Porous	solution	indirect	2.52 - 2.65	2.45 ± 0.01	0.999
Dense	substrate	indirect	2.58-2.73	2.48 ± 0.03	0.998
Porous	substrate	indirect	2.55 - 2.75	2.44 ± 0.02	0.996

It should be noted that the $E_{\rm gd}$ and $E_{\rm gi}$ values for BiVO₄ scheelite monoclinic modification recently obtained using the complex spectral methods were 2.68 and 2.52 eV [18], the difference between $E_{\rm gd}$ and $E_{\rm gi}$ was 0.16 eV. These values are in good agreement with our $E_{\rm gd}$ and $E_{\rm gi}$ values determined in a significantly different way – by analyzing the photocurrent spectra. Small (0.05 eV) excess of $E_{\rm gd}$ value given in [18] above the value obtained in our study, when illumination of the electrode was carried out from the FTO substrate side, presumably, can be attributed to the quantum confinement effect, which may appear in BiVO₄ films used in the work [18]. We can explain the 0.04 eV difference between the $E_{\rm gi}$ value for "dense" BiVO₄ films and the data for $E_{\rm gi}$ given in [18] in a similar way. Slightly lower $E_{\rm gd}$ and $E_{\rm gi}$ values obtained for the irradiation of the electrode from the solution side can be attributed to the light scattering effect when it passes through the film to the photogenerated carriers separation area which is located near the contact with the FTO. Similar effect was observed in for ZnO films covered by SILAR grown CdS nanoparticles [36].

As it was mentioned above, charge carrier recombination can affect $E_{\rm g}$ values determined from IPCE spectra. Since the illumination of "porous" films from the conductive FTO substrate

side provides the maximal IPCE values (minimal recombination impact), the corresponding values $E_{\rm gi} = 2.44$ eV and $E_{\rm gd} = 2.63$ eV could be probably considered as the most reliable ones.

4. Conclusions

BiVO₄ film electrodes with different porosity have been prepared by spin-coating method. Their single-phase scheelite-type monoclinic crystal structure has been revealed by XRS and Raman spectroscopy methods, and the optical band gap has been found from the anodic photocurrent spectra. The photoelectrochemically determined most reliable value of the indirect optical transition band gap $E_{\rm gi}$ for BiVO₄ scheelite monoclinic phase is considered to be 2.44 eV (obtained for "porous" films under irradiation from the FTO substrate side). Accordingly, $E_{\rm gd}$ value for direct optical transitions is 2.63 eV. Obtained $E_{\rm gd}$ and $E_{\rm gi}$ values, in our opinion, are the most useful in the interpretation of spectral efficiency dependencies of photocatalytic and photoelectrochemical processes, since these values are obtained not from the optical diffuse reflection spectra, but from the photocurrent spectra, which give the efficiency of photoelectrochemical reactions under illumination. Although the band gap determination in this case is based on the linear dependence of IPCE on the optical absorption coefficient of the semiconductor, the impact of the impurity absorption and other types of absorption not associated with the excitation of electrons from the valence band into conduction band of semiconductor is minimized in the spectral dependence of the quantum efficiency.

Acknowledgments

The work was financially supported by the Belarusian Republican Foundation for Fundamental Research (project H15IND-014).

References

- [1] J. Yu, A. Kudo, Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO₄, Adv. Funct. Mater. 16 (2006) 2163–2169, http://dx.doi.org/10.1002/adfm.200500799.
- [2] N.C. Castillo, L. Ding, A. Heel, T. Graule, C. Pulgarin, On the photocatalytic degradation of phenol and dichloroacetate by BiVO₄: The need of a sacrificial electron acceptor, J. Photochem. Photobiol. A 216 (2010) 221–227, http://dx.doi.org/10.1016/j.jphotochem.2010.08.021.
- [3] S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO₄ as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis, J. Phys. Chem. C 113 (2009) 11980–11983, http://dx.doi.org/10.1021/jp903757x.
- [4] P. Madhusudan, M.V. Kumar, T. Ishigaki, K. Toda, K. Uematsu, M. Sato, Hydrothermal synthesis of meso/macroporous BiVO₄ hierarchical particles and their photocatalytic degradation properties under visible light irradiation, Environ. Sci. Pollut. Res. 20 (2013) 6638–6645, http://dx.doi.org/10.1007/s11356-013-1694-x.
- [5] S.M. Thalluri, C.M. Suarez, M. Hussain, S. Hernandez, A. Virga, G. Saracco, N. Russo, Evaluation of the parameters affecting the visible-light-induced photocatalytic activity of monoclinic BiVO₄ for water oxidation, Ind. Eng. Chem. Res. 52 (2013) 17414–17418, http://dx.doi.org/10.1021/ie402930x.
- [6] K.P.S. Parmar, H.J. Kang, A. Bist, P. Dua, J.S. Jang, J.S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO₄ photoanodes, ChemSusChem. 5 (2012) 1926–1934, http://dx.doi.org/10.1002/cssc.201200254.

- [7] H. K. Timmaji, W. Chanmanee, N. R. de Tacconi and K. Rajeshwar, Solution combustion synthesis of BiVO₄ nanoparticles: effect of combustion precursors on the photocatalytic activity, J. Adv. Oxid. Technol. 14 (2011) 93–105.
- [8] A. Iwase, A. Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO₄ fine particles prepared in an aqueous acetic acid solution, J. Mater. Chem. 20 (2010) 7536–7542, http://dx.doi.org/10.1039/c0jm00961j.
- [9] T.W. Kim, K.-S. Choi, Nanoporous BiVO₄ photoanodes with dual-layer oxygen evolution catalysts for solar water splitting, Science 343 (2014) 990–994, http://dx.doi.org/10.1126/science.1246913.
- [10] Y. Liang, T. Tsubota, L.P.A. Mooij, R. van de Krol, Highly improved quantum efficiencies for thin film BiVO₄ photoanodes, J. Phys. Chem. C 115 (2011) 17594–17598, http://dx.doi.org/10.1021/jp203004v.
- [11] R. Venkatesan, S. Velumani, A. Kassiba, Mechanochemical synthesis of nanostructured BiVO₄ and investigations of related features, Mater. Chem. Phys. 135 (2012) 842–848, http://dx.doi.org/10.1016/j.matchemphys.2012.05.068.
- [12] G. Li, Y. Bai, W.F. Zhang, Difference in valence band top of BiVO₄ with different crystal structure, Mater. Chem. Phys. 136 (2012) 930–934, http://dx.doi.org/10.1016/j.matchemphys.2012.08.023.
- [13] Y. Sun, Y. Xie, C. Wu, S. Zhang, S. Jiang, Aqueous synthesis of mesostructured BiVO₄ quantum tubes with excellent dual response to visible light and temperature, Nano Res. 3 (2010) 620–631, http://dx.doi.org/10.1007/s12274-010-0022-8.
- [14] L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, A sonochemical route to visible-light-driven high-activity BiVO₄ photocatalyst, J. Mol. Catal. A: Chem. 252 (2006) 120–124, http://dx.doi.org/10.1016/j.molcata.2006.01.052.

- [15] D.J. Payne, M. Robinson, R.G. Egdell, A. Walsh, J. McNulty, K.E. Smith, L.F.J. Piper, The nature of electron lone pairs in BiVO₄, Appl. Phys. Lett. 98 (2011) 212110, http://dx.doi.org/10.1063/1.3593012.
- [16] S. Stoughton, M. Showak, Q. Mao, P. Koirala, D.A. Hillsberry, S. Sallis, L.F. Kourkoutis, K. Nguyen, L.F.J. Piper, D.A. Tenne, N.J. Podraza, D.A. Muller, C. Adamo, D.G. Schlom, Adsorption-controlled growth of BiVO₄ by molecular-beam epitaxy, APL Mater. 1 (2013) 042112, http://dx.doi.org/10.1063/1.4824041.
- [17] H. Gong, N. Freudenberg, M. Nie, R. van de Krol, K. Ellmer, BiVO₄ photoanodes for water splitting with high injection efficiency, deposited by reactive magnetron co-sputtering, AIP Adv. 6 (2016) 045108, http://dx.doi.org/10.1063/1.4947121.
- [18] J.K. Cooper, S. Gul, F.M. Toma, L. Chen, Y.-S. Liu, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, Indirect bandgap and optical properties of monoclinic bismuth vanadate, J. Phys. Chem. C 119 (2015) 2969–2974, http://dx.doi.org/10.1021/jp512169w.
- [19] G. Li, D. Zhang, J.C. Yu, Ordered mesoporous BiVO₄ through nanocasting: a superior visible light-driven photocatalyst, Chem. Mater. 20 (2008) 3983–3992, http://dx.doi.org/10.1021/cm800236z.
- [20] O.F. Lopes, K.T. Carvalho, A.E. Nogueira, W. Avansi, C. Ribeiro, Controlled synthesis of BiVO₄ photocatalysts: Evidence of the role of heterojunctions in their catalytic performance driven by visible-light, Appl. Catal. B: Environ. 188 (2016) 87–97, http://doi.org/10.1016/j.apcatb.2016.01.065.
- [21] P. Y. Yu, M. Cardona, Fundamentals of Semiconductors; Springer: Berlin–Heidelberg–New York, 2005.
- [22] G. Wang, Y. Ling, X. Lu, F. Qian, Y. Tong, J.Z. Zhang, V. Lordi, C.R. Leao, Y. Li, Computational and photoelectrochemical study of hydrogenated bismuth vanadate, J. Phys. Chem. C 117 (2013) 10957–10964, http://dx.doi.org/10.1021/jp401972h.
- [23] Y.V. Pleskov, Solar Energy Conversion, Springer-Verlag, Heidelberg, 1990.

- [24] C. Zachäus, F.F. Abdi, L.M. Peter, R. van de Krol, Photocurrent of BiVO₄ is limited by surface catalysis, Chem. Sci. surface recombination, not 8 (2017)3712–3719, http://doi.org/10.1039/C7SC00363C.
- [25] S. Gregg, K. Sing, Adsorption Surface Area and Porosity, Academic Press, London, 1982.
- [26] W. M. Haynes, CRC Handbook of Chemistry and Physics, 94th Edition, CRC Press, Taylor & Francis, 2013.
- [27] R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, Raman spectroscopy of three polymorphs of BiVO₄: clinobisvanite, dreyerite and pucherite, with comparisons to (VO₄)₃-bearing minerals: namibite, pottsite and schumacherite, J. Raman Spectrosc. 37 (2006)http://dx.doi.org/10.1002/jrs.1499.
- [28] M.S. Jang, H.L. Park, J.N. Kim, J.H. Ro, Y.H. Park, Raman spectrum in monoclinic BiVO₄, Jpn. J. Appl. Phys. 24 (1985) 506–507.
- [29] F.D. Hardcastle, I.E. Wachs, H. Eckert, D.A. Jefferson, Vanadium(V) environments in bismuth vanadates: A structural investigation using Raman spectroscopy and solid state ⁵¹V (1991)NMR. J. Solid State Chem. 90 194–210, http://dx.doi.org/10.1016/0022-4596% 2891% 2990135-5.
- [30] Z. Zhao, Z. Li, Z. Zou, Electronic structure and optical properties of monoclinic clinobisvanite BiVO₄, Phys. Chem. Chem. Phys., 2011, 13, 4746 – 4753, http://dx.doi.org/ 10.1039/C0CP01871F.
- [31] M. Zalfani, M. Mahdouani, R. Bourguiga, B.L. Su, Experimental and theoretical study of optical properties and quantum size phenomena in the BiVO₄/TiO₂ nanostructures, Superlattices Microstruct. 83 (2015) 730–744, http://dx.doi.org/10.1016/j.spmi.2015.04.020.

- [32] Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, M.H. Whangbo, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO₄ photocatalyst,
- Catal. Commun. 11 (2009) 210–213, http://dx.doi.org/10.1016/j.catcom.2009.10.010.
- [33] S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO₄ with scheelite structure and their photocatalytic properties, Chem. Mater. 13 (2001) 4624–4628, http://dx.doi.org/10.1021/cm0103390.
- [34] A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO₄ powder from layered vanadates at room temperature and its photocatalytic and photophysical properties, J. Am. Chem. Soc. 121 (1999) 11459 –11467, http://dx.doi.org/10.1021/ja992541y.
- [35] J.A. Seabold, K. Zhu, N.R. Neale, Efficient solar photoelectrolysis by nanoporous Mo:BiVO₄ through controlled electron transport, Phys.Chem.Chem.Phys. 16 (2014) 1121–1131, http://dx.doi.org/10.1039/c3cp54356k.
- [36] M.V. Malashchonak, E.A. Streltsov, A.V. Mazanik, A.I. Kulak, S.K. Poznyak, O.L. Stroyuk, S.Ya. Kuchmiy, P.I. Gaiduk, Band-gap and sub-band-gap photoelectrochemical processes at nanocrystalline CdS grown on ZnO by successive ionic layer adsorption and reaction method, Thin Solid Films 589 (2015) 145–152, http://dx.doi.org/10.1016/j.tsf.2015.04.057.

ACCEPTED MANUSCRIPT Supplementary Information

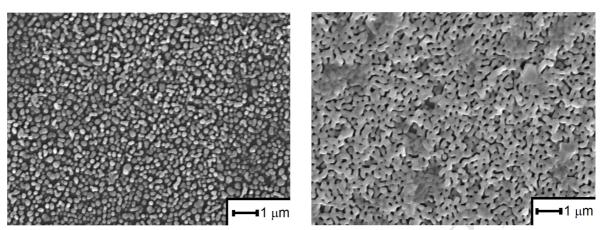
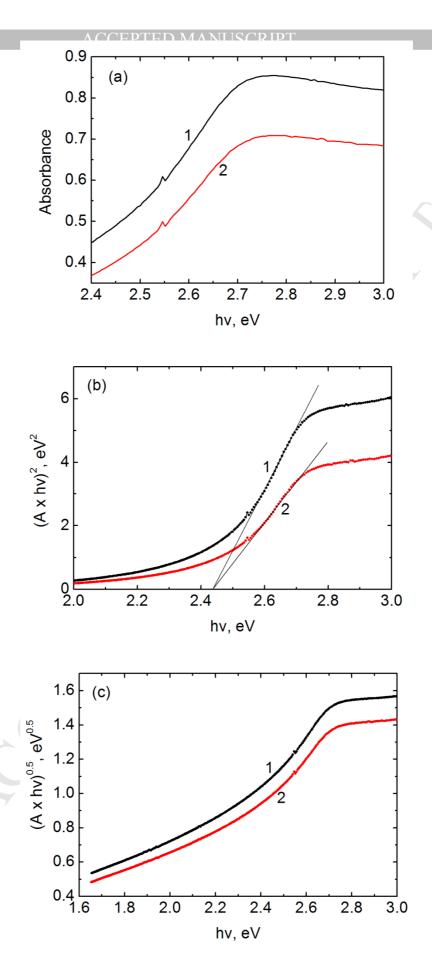
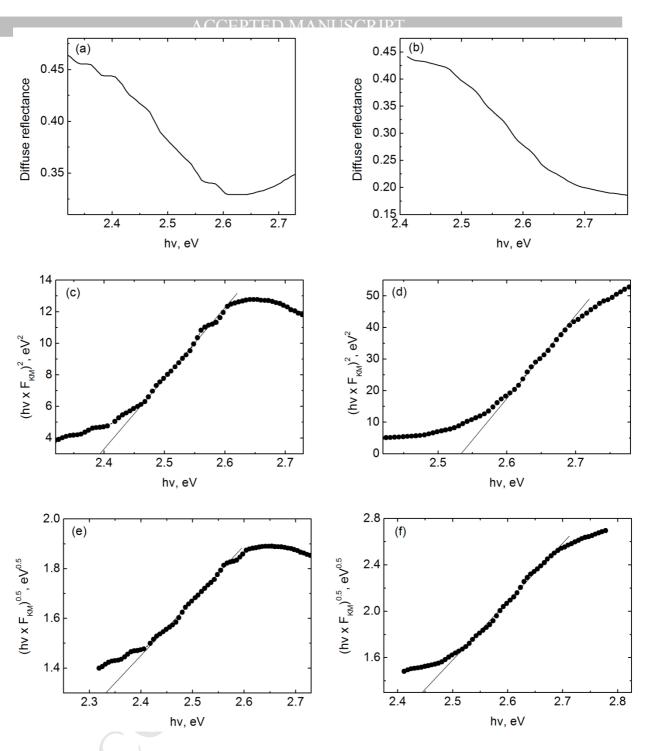




Fig. S1. SEM images of "dense" (on the left) and "porous" (on the right) BiVO₄ films.

Fig. S2. Transmission spectra of the "dense" (curves 1) and "porous" (curves 2) BiVO₄ films (a) and their linearization in the Tauc coordinates for direct (b) and indirect (c) optical transitions.

Fig. S3. Diffuse reflectance spectra of the "dense" (a) and "porous" (b) $BiVO_4$ films and their linearization in the Tauc coordinates for direct (c, d) and indirect (e, f) optical transitions with the Kubelka – Munk function.