- 3. *HAMAMATSU PHOTONICS K. K., Solid State Division.* Characteristics and use of FTT-CCD area image sensor. Technical information. 2003.
- 4. *Micron Technology Inc.* 1/2-INCH CMOS ACTIVEPIXEL DIGITAL IMAGE SEN-SOR MT9V403. 2004.
- 5. *Sony*. Diagonal 8mm (Type 1/2) Progressive Scan CCD Solid-state Image Sensor ICX415AL with Square Pixel for CCIR B/W Cameras. 2004.
- 6. *НИИ «Электрон»*. Датчик оптического излучения Р22. Технический паспорт. Санкт-Петербург, 2004.

АЛГОРИТМ МЕНДЕНХОЛЛА-ВЕЛЛЕРА ДЛЯ РАСЧЕТА УГЛА РАССЕЯНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В СЦМ

А. А. Масленков

1. ВВЕДЕНИЕ

Одним из основных методов численного моделирования взаимодействия заряженных частиц с твердым телом является метод Монте-Карло (МК). Наиболее известными программами, реализующими метод МК в применении к задачам ионного легирования, являются TRIM(SRIM) [1] и Geant4 [2]. В основе любой программы, моделирующей движение заряженной частицы в твердом теле, лежат физические приближения, упрощающие описание процессов взаимодействия заряженных частиц с электронной и ядерной подсистемами мишени. Одним из таких упрощений является расчет угла рассеяния (Θ) в системе центра масс (СЦМ) по "магической формуле" (МФ), предложенной Бирзаком с соавторами [3] более 25 лет назад.. Применение МФ связано со сложностью многократного расчета классического интеграла рассеяния при использовании реалистичных потенциалов ион-атомного взаимодействия. Физика TRIMалгоритма заложена в то время, когда быстродействие компьютеров было весьма ограниченным, и многие прямые расчеты заменялись подгоночными формулами для экономии расчетного времени. Поэтому сегодня необходим тщательный пересмотр давних упрощений и дополнение пакета более строгими физическими формулами.

Целью настоящей работы является тестирование и модернизация предложенного в [4] алгоритма расчета Θ для различных потенциалов ион-атомного взаимодействия и сравнение результатов вычислений с аналогичными данными, полученными с использованием МФ.

2. МЕТОДИКА ЧИСЛЕННОГО ЭКСПЕРИМЕНТА

Основные приближения и расчетные формулы, используемые при вычислении угла рассеяния по методу Менденхолла-Веллера (МВ) представлены в [4]. В программе Scattering заменена формула для расчета угла рассеяния $\Theta = \pi \left(1 - \frac{\beta \alpha(\epsilon, \beta)}{x_0} \right)$ на формулу из алгоритма TRIM: $\sin(\theta_C/2) = \cos(\pi\beta a/2x_0)$.

Было замечено, ссылаясь на первое равенство, что для малых углов потеря в точности проистекает из разности двух членов с величиной около единицы. Мной была разработана и написана программа Scattering, которая позволяет рассчитать угол рассеяния по «магической формуле» и методу MB. Входными данными являются безразмерные значения прицельного параметра и энергии заряженной частицы. В качестве выходных параметров имеем безразмерную величину расстояния наибольшего сближения и угол рассеяния в СЦМ, представленный в градусах и радианах.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для проверки полной адекватности расчетов угла рассеяния и расстояния наибольшего сближения, программа Scattering была протестирована для всех случаев, представленных в [4], где приведена таблица для углов рассеяния в СЦМ в зависимости от приведенной энергии и прицельного параметра. Для сравнения расчетов Θ по «магической» формуле МФ и МВ было решено расширить таблицу, приведенную в [4], добавив в нее расчеты для ФЭМ, ФЭУ, ФЭС-Кг и по МФ (также для трех типов потенциалов). Результаты расчетов угла рассеяния в СЦМ приведены в *таблице* 1.

Первые две колонки содержат входные данные. В четвертую, пятую и шестую колонки внесены углы рассеяния в СЦМ, рассчитанные по методу Менденхолла-Веллера для трех функций экранирования. Соответственно, седьмая, восьмая и девятая колонки содержат углы, рассчитанные по «магической» формуле.

Сначала надо отметить, что в некоторых случаях невозможны расчеты по МФ (соответствующие графы помечены как «-»). Видно, что такие расчеты отсутствуют для следующих пар: значение приведенного прицельного параметра меньше значения приведенной энергии. За исключением единственного случая – когда для расчета по МФ используется ФЭУ, предложенная авторами МФ [3]. Объяснение такого неоднозначного поведения МФ требует ее дальнейшего исследования. Углы, представленные в таблице 1 в четвертой колонке являются наиболее близкими к экспериментальным, как было указано в [4]. Поэтому целесообразно оценивать отклонения всех остальных рассчитанных углов от значений углов, представленных в четвертой колонке. Видно, что значения углов в четвертой (ФЭМ) и шестой (ФЭС-Кг), седьмой (ФЭМ) и девятой (ФЭС-Кг) колонках очень близки между собой. При сравнении этих расчетов с универсальным потенциалом видно, что в некоторых случаях имеем сильное отклонение от ФЭМ. Было замечено, что «магическая» формула дает близкие к экспериментальным результаты лишь при больших углах отклонения, т.е. при обратном рассеянии.

Существует немало литературы, демонстрирующей экспериментальные угловые распределения проникающих через пленку ионов. Так, например, в работе [5] представлены данные проведенного эксперимента и моделирования по рассеянию низкоэнергетических протонов на алюминиевой фольге толщиной 20нм. Энергия протонов 10 кэВ.

Для сравнения экспериментальных данных с теорией была разработана программа Transmit. Программа SRIM 2003 выдает результаты углов рассеяния частиц в файл Transmit.txt. Программа Transmit обрабатывает эти данные и по ним строит график углового распределения протонов. Так как в файле выведены значения косинусов углов рассеяния, то программа Transmit пересчитывает их в значения углов в градусах. Для сортировки полученных данных был использован метод сортировки вставкой. Отсортированный массив представлен в виде графика (*puc* 1.).

Таблица 1

ε	β	x_0	Θ,	Θ,	Θ, C-	$\Theta_{M\Phi}$	$\Theta_{M\Phi}$,	Θ _{MΦ} , C-
		ФЭМ	ФЭМ	ФЭУ	Сг	,ФЭМ	ФЭУ	Сг
0,00	0,5	11,416	173,61	175,02	173,01	173,210	174,889	173,584
1			4	2	3			
0,00	20	20,389	6,943	24,410	5,782	22,213	40,723	16,065
1								
0,1	0,2	2,209	163,91	167,51	164,36	162,106	169,538	169,104
			3	9	7			
0,1	0,05	2,201	175,96	176,87	176,07	173,500	179,682	178,637
			2	2	7			
0,1	8	8,153	4,756	8,826	3,621	19,671	26,785	14,958
1,0	0,85	1,076	35,682	46,768	37,083	-	-	-
1,0	0,9	1,118	33,256	43,938	34,589	-	63,078	28,830
1,0	5	5,039	1,715	2,921	1,540	13,202	17,704	11,307
5,0	0,5	0,561	16,797	22,080	17,633	-	-	-
5,0	10	10,001	0,069	0,126	0,056	2,390	3,777	1,964
7,5	7	7,002	0,120	0,203	0,099	-	-	-
7,5	8	8,002	0,088	0,151	0,072	8,178	12,054	6,901
10,0	0,02	0,095	123,54	133,92	124,41	-	-	-
	5		5	2	7			
10,0	1	1,021	3,444	4,791	3,614	-	-	-

Углы рассеяния в СЦМ для трех функций экранирования

Отчетливо видно, как отличается профиль кривой, помеченной круж-ОТ кривой, ками помеченной квадратами. На первой отсутствуют плечи и изломы, характерные для графиизображающека, 10^{4} событий. го Кроме того, существует видимое расхождение peзультатов программы SRIM 2003 с экспериментальными данными и теоретической аппроксимацией через импульсное приближение.

4. ЗАКЛЮЧЕНИЕ

1. Разработана процедура и написана программа SCATTERING для

с энергией E=10кэВ, прошедших алюминиевую пленку толщиной 20 нм. Точками обозначены экспериментальные данные. Кривая, помеченная кружками распределение для 10⁵ событий, квадратами для 10⁴ событий. Сплошная линия аппроксимация полиномом 10 порядка расчета через импульсное приближение.

численного расчета угла рассеяния заряженных частиц в СЦМ. В дальнейшем эту программу можно использовать для работы с различными пакетами программ, реализующих метод Монте-Карло.

2. Анализ углов рассеяния при прохождении протонов через тонкие пленки показал, что при использовании программы SRIM 2003 полученные профили углового распределения существенно отличаются от экспериментальных (*puc* 1). Это связано с некорректным расчетом угла рассеяния при использовании приближений, заложенных в пакете SRIM 2003.

Литература

1. <u>WWW.SRIM.ORG</u>

- 2. *Mendenhall M. H., Weller R. A.* / An Algorithm for Computing Screened Coulomb Scattering in GEANT// Nuclear Instruments and methods (B), 2004, 1–19.
- 3. *Biersack J. P., Haggmark L. G.* / A Monte Carlo computer program for the transport of energetic ions in amorphous targets // Nuclear Instruments and methods 1980. 174 pp.257–269.
- 4. *Mendenhall M. H., Weller R. A.* / Algorithms for the rapid computation of classical cross section for screened Coulomb collisions // Nuclear Instruments and methods. 1991 B58 pp.11–17.
- 5. *Archubi C. D. et al.* Angular dispersion of protons passing through thin metallic films // Nuclear Instruments and methods. 2005.– B230 p.53.

МОДЕЛИРОВАНИЕ ОДНОЧАСТИЧНЫМ МЕТОДОМ МОНТЕ-КАРЛО ПЕРЕНОСА ЭЛЕКТРОНОВ В АРСЕНИДЕ ГАЛЛИЯ

А. В. Михайлик, Д. П. Чиж

Исследование взаимосвязи электрофизических свойств полупроводников с их зонной структурой, наличием тех или иных механизмов рассеяния носителей заряда, концентрацией примесей, температурой, наличием и видом электрических полей остается на сегодняшний день актуальной задачей, особенно для получения точных количественных оценок. Еще более важным является прогнозирование статических и динамических вольт-амперных характеристик разрабатываемого прибора в зависимости от указанных свойств используемого полупроводника, внешних условий и его реальной геометрии.

Первая задача может быть решена аналитически или итерационным численным анализом кинетического уравнения Больцмана, а вторая — решением электродинамических уравнений при соответствующих граничных условиях или методом эквивалентных схем. Однако получение, например, точных количественных оценок указанными методами для полупроводников $A^{III}B^V$, так же как и анализ гетероструктур или субмикронных приборов, сопряжено с большими сложностями даже при введении ряда существенных упрощений. Для таких случаев огромным преимуществом обладает метод Монте-Карло, позволяющий весьма эффективно решать обе упомянутые выше задачи.

Целью данной работы явилась разработка численной модели переноса электронов в объемном GaAs на основе одночастичного метода Монте-Карло [1,2] и расчет зависимости их дрейфовой скорости в этом материале от величины приложенного электрического поля и температуры.

Идея подхода состоит в том, чтобы моделировать движение электрона в \vec{p} -пространстве. Рассматривается пролет свободного электрона, пре-