Комаров А.Ф. 1 , Заяц Г.М. 2 , Ювченко В.Н. 1 , Мискевич С.А. 1

МОДЕЛИРОВАНИЕ ВОЗДЕЙСТВИЯ РЕНТГЕНОВСКИХ И ГАММА-КВАНТОВ НА ХАРАКТЕРИСТИКИ МОП-ТРАНЗИСТОРОВ

¹Научно-исследовательское учреждение «Институт прикладных физических проблем имени А.Н.Севченко» Белорусского государственного университета.

²Институт математики НАН Беларуси.

Минск, Республика Беларусь. yuvchenko@bsu.by

С использованием модели пространственно-временной эволюции заряда, возникающего в подзатворном оксиде МОП-транзистора при воздействии ионизирующего излучения, проведено численное моделирование радиационно-индуцированного изменения порогового напряжения МОП-транзисторов с различной толщиной подзатворного диэлектрика. Представлены результаты моделирования ВАХ n-МОП-транзисторов, облучаемых гамма-квантами.

Повышение требований к долговечности радиоэлектронной аппаратуры специального назначения ставит актуальную задачу обеспечения функционирования интегральных микросхем (ИМС) при длительном воздействии ионизирующих излучений в реальных условиях эксплуатации на объектах атомной энергетики, а также космических летательных аппаратах. Изучение влияния проникающей радиации на характеристики МОП-транзисторов и комплементарных МОП интегральных схем (КМОП ИС), в том числе методом математического моделирования, является важной задачей.

Воздействие ионизирующей радиации на МОП-структуры приводит к заметному изменению их электрофизических характеристик, что, в основном, обусловлено образованием центров захвата и накоплением пространственного заряда в подзатворном диэлектрике, возрастанием плотности поверхностных состояний на границе раздела диэлектрик-полупроводник, а также уменьшением подвижности носителей заряда в приповерхностной области полупроводника [1].

Для описания процессов накопления радиационно-индуцированного заряда в диэлектрике МОП-структур (SiO₂) и последующей его релаксации используем модель, в соответствии с которой в запрещённой зоне диэлектрика располагаются ловушечные уровни двух энергий – "мелкий", расположенный вблизи потолка валентной зоны, и "глубокий", расположенный вблизи середины запрещенной зоны. Заряд, накопленный на "мелких" ловушках, может отжигаться в рабочем диапазоне температур за счет электронов из валентной зоны SiO₂. Заряд на "глубоких" ловушках в середине запрещенной зоны, практически не отжигается вплоть до максимальных значений неразрушающих температур.

Ловушки, соответствующие "глубокому" уровню, расположены в объеме диэлектрика, соответствующие "мелкому" уровню – в переходных слоях вблизи границы с полупроводником и поликремниевым затвором. В процессе воздействия радиации в диэлектрике МДП-структуры происходит генерация электронно-дырочных пар, разделение этих пар внешним электрическим полем, уход более подвижных носителей – электронов из слоя SiO₂ в электроды и захват дырок на ловушечные центры в диэлектрике.

Пространственно-временная эволюция заряда, возникающего в диэлектрике МДП-структуры при воздействии на нее ионизирующего излучения, в рамках данной модели описывается системой уравнений [2]

$$\frac{\partial n}{\partial t} = D_n \frac{\partial^2 n}{\partial x^2} + \mu_n \frac{\partial (n \cdot E)}{\partial x} - n Q_1(E, P_{t1}, P_{t2}) + G(E), \tag{1}$$

$$\frac{\partial p}{\partial t} = D_p \frac{\partial^2 p}{\partial x^2} + \mu_p \frac{\partial (p \cdot E)}{\partial x} - p Q_2(E, P_{t1}, P_{t2}) + G(E), \tag{2}$$

Туннельный механизм разрядки накопленного в диэлектрике заряда

$$\frac{\partial P_t}{\partial t} = -P_t S_3(E). \tag{5}$$

Распределение потенциала в р-МОП транзисторе определяется уравнением электронейтральности

$$-V_{G} + \varphi_{ms} + \psi - \left(\frac{Q_{0t}}{C_{ox}} + \frac{Q_{sc}(\psi)}{C_{ox}} + \frac{Q_{ss}(\psi)}{C_{ox}}\right) = 0,$$
(6)

где

$$Q_{2}(E, P_{t1}, P_{t2}) = \left(N_{t1} - P_{t1} + N_{t2} - P_{t2}\right)\sigma_{p}(E)\left(\mu_{p}|E| + \frac{\mu_{p}}{\mu_{n}}v_{th}\right),$$

$$S_{1}(p, n, E) = p\sigma_{p}(E)\left(\mu_{p}|E| + \frac{\mu_{p}}{\mu_{n}}v_{th}\right) + n\sigma_{n}\left(\mu_{n}|E| + v_{th}\right),$$

$$S_{3}(E) = \alpha_{1}(E)\exp(-\alpha_{2}x).$$

Здесь n, p — концентранции свободных электронов и дырок; E — напряженность электрического поля в диэлектрике; $P_{t1,2}$ — концентрации дырочного заряда, захваченного на ловушках, соответственно «мелких» и «глубоких»; $N_{t1,2}$ — концентрации ловушечных уровней; D_n, D_p — коэффициенты диффузии, μ_n, μ_p — подвижности электронов и дырок, соответственно; G — темп генерации излучением электронно-дырочных пар; q — заряд электрона; ε_0 — диэлектрическая проницаемость диэлектрика; V_G — напряжение на затворе МОП-транзистора; ϕ_{ms} — разность работ выхода материала затвора и полупроводника; ψ — поверхностный потенциал полупроводника, Q_{0t} — эффективный заряд в диэлектрике, захваченный на ловушечные уровни; Q_{cs} — заряд области пространственного заряда полупроводника; Q_{ss} — заряд на поверхностных состояниях; C_{ox} — емкость слоя диэлектрика; α_1, α_2 — частотный и барьерный факторы; σ_n, σ_p — полевые зависимости сечения захвата дырки и электрона; v_{th} — тепловая скорость носителей заряда.

Зависимости $\sigma_n(E)$, $\sigma_p(E)$, G(E), а также выражения для вычисления зарядов Q_{0t} , $Q_{cs}(\psi)$, $Q_{ss}(\psi)$ приведены в работе [3]. Использовался следующий вид распределения по толщине диэлектрика "мелких" N_{t1} и "глубоких" N_{t2} ловушечных уровней [2]:

$$N_{t1} = 5 \times 10^{18} \left(\left(e^{(x-20)} + 1 \right)^{-1} + \left(e^{(80-x)} + 1 \right)^{-1} \right), \quad N_{t2} = 5 \times 10^{18} \left(\left(e^{(x-90)} + 1 \right)^{-1} - \left(e^{(x-10)} + 1 \right)^{-1} \right).$$

Для решения задачи использовались разработанные авторами итерационный алгоритм и разностная схема, описанные в [3]. При расчётах использовались следующие значения: мощность радиационной дозы $\dot{D}=dD/dt=10^2$ P/c, концентрация легирующей примеси в кремнии $N_{\rm B}=10^{15}$ см⁻³, температура T=300 K, $V_G=-0.9$ B, $\phi_{ms}=-0.5$ B, $\mu_n=10^2$ см $^2{\rm B}^{-1}{\rm c}^{-1}$, $\mu_p=0.6\cdot 10^{-3}$ см $^2{\rm B}^{-1}{\rm c}^{-1}$. Коэффициент генерации электронно-дырочных пар рентгеновским излучением в SiO2 $k_g=8\times 10^{12}$ см $^{-3}$ рад $^{-1}$ пар , $\epsilon_{ox}=1.6$, $\epsilon_s=11.5$, $k_D=1.012$.

На рисунке 1 представлено рассчитанное изменение порогового напряжения p-MOП транзистора в процессе облучения гамма-квантами, для различных толщин подзатворного

диэлектрика t_{ox} .

На рисунке 2 представлены результаты моделирования сток-затворной ВАХ n-МОП транзистора классической геометрии с длиной и шириной канала 0.35 мкм и 10 мкм, соответственно, облученного гамма-квантами с дозой до 1×10^7 рад [4]. Наилучшее соответствие с экспериментальными результатами дает приближение короткоканального транзистора, при котором ток стока в области насыщения определяется как [5]:

$$I_{DSAT} = k_{ym} Z C_{ox} \left(V_G - V_{th} - \frac{n}{2} V_D \right) v_{SAT}, \quad n = 1 + \left\langle \frac{\partial V_{th}}{\partial V_{SB}} \right\rangle, \tag{7}$$

где Z — ширина канала, V_{th} — пороговое напряжение, v_{SAT} — скорость насыщения носителей в канале, n — коэффициент влияния подложки. Здесь мы ввели k_{ym} — коэффициент, связанный с токами утечки.

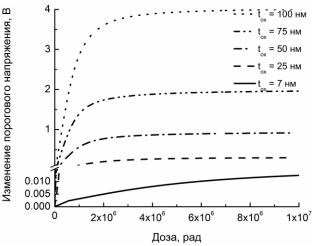


Рисунок 1 — Рассчитанная зависимость изменения порогового напряжения p-MOПТ от дозы облучения для различных толщин подзатворного диэлектрика.

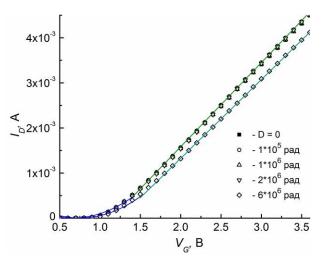


Рисунок 2 — Влияние облучения гамма-квантами на сток-затворную ВАХ n-МОПТ классической геометрии с $t_{ox} = 7$ нм.

Наилучшее соответствие с экспериментальными результатами получено при использовании следующих значений: n=0.27; $k_{ym}=0.63$ для BAX транзисторов, облученных с дозами до $2x10^6$ рад. При облучении с дозой $6x10^6$ рад происходит некоторый сдвиг и искажение BAX; для моделирования использованы значения n=0.32; $k_{ym}=0.59$.

Список литературы

- 1. Коршунов, Ф. П. Воздействие радиации на интегральные микросхемы / Ф.П. Коршунов, Ю.В. Богатырев, В.А. Вавилов. Минск : Наука и техника, 1986. 254 с.
- 2. Моделирование процессов рентгеновской корректировки пороговых напряжений МДП-интегральных схем / М.Н. Левин [и др.] // Микроэлектроника. -2006. Т. 35, № 5. С. 382-391.
- 3. Заяц, Г.М.. Численное исследование влияния радиационных излучений на параметры МДП-приборов / Г.М Заяц, Ф.Ф. Комаров, А.Ф. Комаров // Информатика. 2014. № 3.— С. 52—61.
- 4. Радиационные эффекты в элементах субмикронных КМОП интегральных схем / Ф.П. Коршунов [и др.] // Доклады БГУИР. 2011. Т. 58, № 4. С. 43—48.
- 5. Парменов, Ю. А. Элементы твердотельной наноэлектроники / Ю. А. Парменов. М. : МИЭТ, 2011.-131 с.