Интрамуральная нервная система тонкой кишки, энтероциты, клетки эндокринной и иммунной системы кишки чувствительны к длительному поступлению свинца в организм, который оказывает на данные структуры сильное токсическое воздействие, проявляющееся в виде дистрофических и дегенеративных изменений, приводящих к частичному, а порой и к полному разрушению указанных структур.

Литература

- 1. Дискаленко А.П., Добрянская Е.В., Трофименко Ю.Н. Влияние нитратов питьевой воды на функциональное состояние печени и центральной нервной системы // Здравоохранение. Кишинев, 1977. №6. С.13—16.
- 2. Зербина Д.Д., Поспишиль Ю.А. Хроническое воздействие свинца на сосудистую систему: проблема экологической патологии // Архив патологии. 1990. Т.52, №7. С.70—73.
- 3. Ефанова Л.И., Гладков П.А., Дынин В.И. Влияние нитритов на общую резистентность и специфическую реактивность лабораторных животных // Профилактика и терапия болезней сельскохозяйственных животных. Воронеж, 1994. С.10–14.
- 4. Попова В.А. Заболевания щитовидной железы у детей, проживающих в экологически неблагоприятных районах. Автореф. дис. докт. мед. наук. Ростов-на-Дону, 2003. 40 с.
- 5. Боголепов Н.Н. Методы электронно-микроскопического исследования мозга. М., 1976. 71 с.
- 6. Протасова О.В. Исследование системы «гипофиз-щитовидная железа» при хронической свинцовой интоксикации // В сб: «Эндокринная система организма и вредные факторы окружающей среды». Л., 1991.— С.190–191.

ВЛИЯНИЕ РАСТИТЕЛЬНЫХ МЕЛАНИНОВ НА СТЕПЕНЬ ПОВРЕЖДЕНИЯ БИОМОЛЕКУЛ УФ РАДИАЦИЕЙ

Д.А. Новиков

Белорусский государственный университет, г. Минск, Беларусь dm-novikov@mail.ri

По своему воздействию на человека УФ радиация является одним из важнейших факторов окружающей среды. Полезные эффекты УФ и видимого света широко используются в медицине при фототерапии рахита, УФ-терапии псориаза и других кожных гипербилирубинемии болезней, фотогемотерапии, лечении новорожденных, фотодинамической терапии опухолей. Однако УФ излучение может выступать и в качестве патогенетического фактора. В этой связи особую озабоченность вызывает увеличение интенсивности коротковолнового (260–290 нм) УФ излучения [1]. У человека это приводит к увеличению фотоповреждений глаз и кожи (фотокератиты, катаракта, эритема, старение и рак кожи), к подавлению клеточного иммунитета [2]. Для защиты открытых участков тела человека от УФ-излучения используются кремы и мази с экранирующим и отражающим действием. Такие кремы содержат вещества, которые эффективно поглощают ультрафиолет и рассеивают его энергию во внутримолекулярных диссипационных процессах. Обычно это производные п-аминобензойной кислоты, оксибензофенона, салициловой кислоты и фенилбензимидозола [3]. Однако недостатком искусственно создаваемых фотопротекторов является то, что большинство из них, в той или иной степени, обладают фототоксичностью. В связи с этим возникает необходимость поиска природных биополемеров, обладающих фотопротекторной активностью.

Особое место среди таких природных биологически активных веществ занимают меланиновые пигменты. Обладая свойствами стабильных свободных радикалов, меланины легко вступают в окислительно-восстановительные реакции, эффективно поглощают излучение в УФ, видимой и ИК области спектра. Исходя из вышеизложенного, нами был

проведен ряд исследований, направленных на изучение фотоэкранирующего действия полученных пигментов. Меланиновые пигменты из винограда и черного чая значительно снижают интенсивность потока УФ-излучения всех диапазонов (табл. 1).

Таблица 1 Изменение интенсивности потока УФ-излучения при использовании защитных препаратов* меланиновых пигментов в Bt/m^2

		Диапазон УФ-излучения								
Источник меланина	240нм		300)нм	360нм					
	_	+	_	+	ı	+				
Виноград (Vitis vinifera)	3,54	0,85	0,28	0,121	0,28	0,169				
Черный чай (Thea sinensis)	3,56	0,38	0,27	0,004	0,29	0,142				

^{*}Препараты меланинов использовались в виде 1,0 % растворов в 0,05 н NaOH, толщина защитного слоя – 27 мкм, "–" – интенсивность потока излучения (без препарата); "+" – интенсивность потока излучения за защитным препаратом.

Наибольший экранирующий эффект наблюдается в УФС и УФВ диапазонах УФизлучения, обладающих наибольшей повреждающей активностью. При сравнении фотоэкранирующей активности растительных меланинов из винограда и препаратов, используемых в косметической индустрии в качестве фотоэкранов (3,3,5-триметилциклогексилсалицелат и 2-гидрокси-4-метокси-бензофенон) [4] можно сказать, что важным достоинством меланинов, как фотоэкранов является их способность поглощать УФизлучение во всех диапазонах (табл. 2).

Таблица 2 Физико-химические свойства меланинов и винограда (Vitis vinifera) сорта "Альфа", черного грузинского чая (Thea sinensis), 3,3,5-триметилциклогексилсалицелата и 2-гидрокси-4-метоксибензофенона

Меланин	ММ, кДа	E 0,001%			ПЦ, спин/г ×10 ¹⁹	Содерх групп	
		240нм	300нм	360нм	×10	СООН	CO
Из чая	50	0,387	0,192	0,112	6,3	3,14	1,58
Из винограда	50	0,203	0,150	0,074	1,4	2,39	1,34
3,3,5-триметил-циклогексилсалицелат	0,261	0,161	0,167	0,004	-	_	_
2-гидрокси-4-метокси-бензофенон	0,228	0,036	1,221	0,008	_	_	_

Инициируя процесс перекисного окисления липидов, УФ-излучение приводит к образованию и накоплению в клетках свободных радикалов, которые включаются в метаболизм и активно воздействуют на клетку, приводя к мутациям и нарушению обменных процессов [2]. Присутствие же в экранируемом растворе меланиновых пигментов приводит к резкому снижению интенсивности и глубины ПОЛ. Как видно из рисунка 1 уже небольшие концентрации меланинов приводят к значительному снижению образования малонового диальдегида при УФ-индуцированном ПОЛ. УФ-излучение способно повреждать молекулы ДНК, приводя к одно- и двунитевым разрывам [5]. Экранирование ДНК рВR-322 растворами меланинов ведет к снижению повреждающего действия УФ излучения. Для меланинов из чая и винограда 50 % экранирования УФ-индуцировонного повреждения ДНК достигается при их концентрации в экранируемом растворе 0,002 и 0,01 % соответственно и толщине экранирующего слоя 27 мкм.

ТБК-акт. прод. реакции, х 10^{-7} М

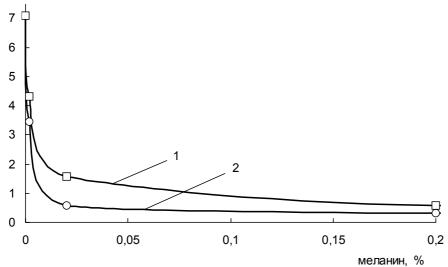


Рис. 1. Фотоэкранирующая активность меланина из винограда *Vitis vinifera* (сорт "Альфа") (1) и меланина из черного грузинского чая *Thea sinensis* (2) при УФ-индуцированном ПОЛ. Время облучения лампой ДРК-125 – 20 мин.

Изучение фотоэкранирующей активности меланинов из винограда и чая показало, что оба исследуемых объекта интенсивно поглощают излучение во всех диапазонах УФ и видимой области спектра. Увеличение степени защитного эффекта указанных веществ коррелирует с концентрацией парамагнитных центров в меланинах. Активно поглощая УФ-излучение, данные пигменты значительно снижают количество повреждений молекул плазмидной ДНК pBR-322, вызываемых УФ-излучением и препятствуют образованию малонового диальдегида при экранировании УФ-индуцированного перекисного окисления ненасыщенных жирных кислот.

Литература

- 1. McElroy M.B., Salawitch R.J. Scavenger effect of vitamin E and derivatives on free radicals generated by photoir-radiated pheomelanin // Science. 1989. V.43. P.763–770.
- 2. Moan J., Dahlback A. Relationship between superoxide dismutase and melanin in a pathogenic fungus # Br. J. Cancer. 1992. V.65. P.916–921.
- 3. Allen J.M. J. The interaction of melanin: effect on radiative and nonradiative transitions // Photochem. Phobiol.–1996.–V.32.–P.33–38.
- 4. Каталог "Merck". Реактивы, диагностика, химикаты. M., 1992/1993.- C. 1438.
- 5. Melanin reduces ultraviolet-induced DNA damage formation and killing rate in cultured human melanoma cells / H. Kobayashi, T. Muramatsu, Y. Yamashina et al. // J. Invest. Dermatol. 1993. V.101, №5. P.685–689.

ВЛИЯНИЕ МЕЛАНИНОВЫХ ПИГМЕНТОВ НА СТЕПЕНЬ ПОВРЕЖДЕНИЯ ДНК АРОМАТИЧЕСКИМИ АМИНАМИ

Д.А. Новиков, М.Н. Новик

Белорусский государственный университет, г. Минск, Беларусь dm-novikov@mail.ru

В результате антропогенного загрязнения окружающей среды происходит рост злокачественных новообразований, около 80 % которых связывают с действием химических веществ [1]. Попадая в организм, большинство генотоксичных ксенобиотиков претерпевают