УДК 577.175.63/.64:577.152.1

АЛЬТЕРНАТИВНЫЕ СҮР11А1-ЗАВИСИМЫЕ ПУТИ МЕТАБОЛИЗМА НЕКОТОРЫХ СТЕРИНОВ И СЕКОСТЕРОИДОВ У МЛЕКОПИТАЮЩИХ

И. В. СЕМАК¹⁾

¹⁾Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Республика Беларусь

Рассмотрены вопросы, связанные с изучением альтернативных цитохром-P-450scc (СҮР11А1)-зависимых путей метаболизма некоторых стеринов и секостероидов у млекопитающих. Митохондриальный СҮР11А1, экспрессия которого обнаружена в надпочечниках, семенниках, яичниках, коже и плаценте, катализирует первую стадию стероидогенеза, в ходе которой холестерол превращается в прегненолон. В результате исследований последнего десятилетия установлено, что СҮР11А1, кроме холестерола, способен использовать в качестве субстратов иные стеролы (7-дегидрохолестерол, эргостерол и др.) и некоторые секостероиды (витамин D). В ходе реакций 7-дегидрохолестерол (но не эргостерол) гидроксилируется по положениям C22 и C20 с последующим разрывом боковой цепи, в результате чего в качестве конечного продукта образуется 7-дегидропрегненолон. Метаболизм витамина D, напротив, предполагает гидроксилирование по положениям C17, C20, C22 и C23 без разрыва боковой цепи. В надпочечниках, плаценте и коже в условиях *ex vivo* протекают аналогичные реакции. Эндогенный 7-дегидропрегненолон обнаружен в эпидермисе, надпочечниках и сыворотке крови, а 20-гидроксивитамин D₃ – в сыворотке крови и эпидермисе, что указывает на наличие СҮР11А1-зависимых метаболических путей *in vivo*. Продукты СҮР11А1зависимого метаболизма стеролов и секостероидов проявляют биологическую активность *in vitro*, что наводит на мысль об их физиологической роли.

Ключевые слова: цитохром P-450scc (СУР11А1); стерины; секостероиды; 7-дегидрохолестерол; эргостерол; 7-дегидропрегненолон; витамин D.

ALTERNATIVE CYP11A1 DEPENDENT PATHWAYS OF METABOLISM OF SEVERAL STEROLS AND SECOSTEROIDS IN MAMMALS

I. V. SEMAK^a

^aBelarusian State University, Nezavisimosti avenue, 4, 220030, Minsk, Republic of Belarus

This article reviews recent studies on alternative cytochrome P-450scc (CYP11A1) dependent pathways of metabolism of several sterols and secosteroids in mammals. Mitochondrial CYP11A1, expressed in the adrenal glands, testis, ovary, skin and placenta, catalyzes the first step of steroidogenesis where cholesterol is converted to pregnenolone. Research over the last decade has revealed that purified CYP11A1 in addition to cholesterol can use others sterols (7-dehydrocholesterol, ergosterol, etc.) and several secosteroids (vitamin D) as substrates. In CYP11A1 dependent reaction 7-dehydrocholesterol, but not ergosterol, is hydroxylated at C22 and C20 followed by side chain cleavage with production 7-dehydropregnenolone as final product. In contrast, metabolism of vitamin D by purified CYP11A1 involves hydroxylations at C17, C20, C22 and C23 that do not lead to side chain cleavage. Adrenal glands, placenta

Образец цитирования:

Семак И. В. Альтернативные СҮР11А1-зависимые пути метаболизма некоторых стеринов и секостероидов у млекопитающих // Вестн. БГУ. Сер. 2, Химия. Биология. География. 2016. № 3. С. 98–106.

Автор:

Игорь Викторович Семак – кандидат биологических наук, доцент; заведующий кафедрой биохимии биологического факультета.

For citation:

Semak I. V. Alternative CYP11A1 dependent pathways of metabolism of several sterols and secosteroids in mammals. *Vestnik BGU. Ser. 2, Khimiya. Biol. Geogr.* 2016. No. 3. P. 98–106 (in Russ.).

Author:

Igor Semak, PhD (biology), docent; head of the department of biochemistry, faculty of biology. *semak@bsu.by*

98 БГУ - 95 лет! У

and skin can also carry out these reactions *ex vivo*. Endogeneous 7-dehydropregnenolone is detected in the epidermis, adrenal glands and serum, and 20-hydroxyvitamin D_3 – in serum and epidermis, confirming the existence of CYP11A1 dependent metabolic pathways *in vivo*. CYP11A1-derived metabolites of sterols and secosteroids are biologically active *in vitro*, suggesting physiological roles for these metabolites.

Key words: cytochrome P-450scc (CYP11A1); sterols; secosteroids; 7-dehydrocholesterol; 7-dehydropregnenolone; cholesterol; ergosterol; vitamin D.

Цитохром P-450scc (СҮР11А1) локализуется в митохондриях млекопитающих и катализирует два последовательных гидроксилирования в положениях C22 и C20 боковой цепи холестерола с последующим разрывом связи C20—C22 (20,22-лиазная реакция) и образованием альдегида изокапроновой кислоты (изокапроальдегида) и прегненолона – предшественника всех типов стероидных гормонов. Донором электронов для CYP11A1 выступает никотинамидадениндинуклеотидфосфат восстановленный (НАДФН), транспорт электронов обеспечивается адренодоксином и адренодоксинредуктазой. CYP11A1 главным образом экспрессируется в надпочечниках и гонадах, в которых синтезируются стероидные гормоны для регуляции на системном уровне. Низкий уровень экспрессии CYP11A1 обнаружен в плаценте, очень низкий – в мозге, почках, кишечнике и коже, где CYP11A1 обеспечивает продукцию прегненолона для синтеза других стероидных гормонов, действующих по аутокринному или паракринному механизму [1].

До недавнего времени полагали, что биологическая роль СҮР11А1 ограничивается образованием прегненолона из холестерола. Однако в 2003 г. было обнаружено, что очищенный СҮР11А1 быка в условиях *in vitro* способен использовать в качестве субстрата не только холестерол (холест-5-ен-3β-ол), но и 7-дегидрохолестерол (холест-5,7-диен-3β-ол), а также витамин D₃ ((5Z,7E,3S)-9,10-секохолеста-5,7,10(19)-триен-3-ол) [2].

В последующем были получены прямые экспериментальные доказательства протекания подобных реакций на разных уровнях организации живой материи. В настоящей статье представлен материал, подтверждающий существование альтернативных путей метаболизма некоторых стеринов и секостероидов у млекопитающих.

СҮР11А1-зависимый метаболизм стеринов

Классические представления о метаболизме 7-дегидрохолестерола. У млекопитающих 7-дегидрохолестерол (5,7-диеновый стероид, 7DHC) является прямым предшественником холестерола и витамина D₃. В организме человека и животных 7-дегидрохолестерол может образовываться в эпителиальных клетках кишечника в результате окисления холестерола, поступившего вместе с пищей или желчью [3]. 7-Дегидрохолестерол, попавший из кишечника в кровоток, восстанавливается в печени до холестерола под действием Д'-стеролредуктазы (код фермента (КФ) 1.3.1.21) и, соответственно, не может включаться в системную циркуляцию и доставляться в кожу. В организме млекопитающих естественным источником 7-дегидрохолестерола, выступающего в качестве предшественника витамина D₃, является кожа. Содержание 7-дегидрохолестерола в коже человека составляет 12–81 мкг/г сухого веса [4], в коже крысы – 103,8 мкг/г [5]. 7-Дегидрохолестерол образуется в дифференцированных кератиноцитах из латостерола (5 α -холест-7-ен-3 β -ол) под действием латостерол-5-десатуразы (Δ^7 -стерол-5(6)-десатуразы, КФ 1.14.19.20 (старый КФ 1.3.3.2)) в ходе синтеза холестерола de novo из ацетил-КоА [3]. Далее, 7-дегидрохолестерол может восстанавливаться Δ' -стеролредуктазой (КФ 1.3.1.21) до холестерола либо под влиянием коротковолнового ультрафиолетового облучения спектра В может подвергаться фотолизу В-кольца стероидного ядра с последующей, характерной для секостероидов термоизомеризацией, приводящей к образованию витамина D₃ [6].

Таким образом, согласно классическим представлениям метаболическая судьба 7-дегидрохолестерола предполагает либо превращение в витамин D₃, либо восстановление до холестерола. В 2003 г. было обнаружено, что очищенный CYP11A1 быка в реконструированной системе *in vitro* способен расщеплять боковую цепь 7-дегидрохолестерола с образованием 7-дегидропрегненолона (7DHP) [2].

В дальнейшем возможность протекания подобных реакций на разных уровнях организации живой материи в различных органах млекопитающих была подтверждена экспериментально.

Альтернативные пути метаболизма 7-дегидрохолестерола. В условиях *ex vivo* было показано, что 7-дегидрохолестерол (7DHC) метаболизируется надпочечниками крыс, кроликов, свиней и собак с образованием специфических продуктов 5,7-диеновой природы, которые были идентифицированы как 7DHP, 22(OH)7DHC и 20,22(OH)₂7DHC [7]. Вовлеченность СУР11А1 в метаболизм 7-дегидрохолестерола в надпочечниках была подтверждена ингибированием ферментативной реакции с помощью DL-аминоглютетимида [7].

\$579-95.rem! (99

При инкубации изолированных митохондрий надпочечников крысы с 7DHC образуются два метаболита, один из которых был идентифицирован как 7DHP. Второй, неидентифицированный, метаболит имеет характерный для 5,7-диеновых стероидов спектр поглощения.

Конверсия 7DHC в 7DHP была также обнаружена в изолированных митохондриях кожи крыс, что согласуется с данными об экспрессии генов адренодоксина, адренодоксинредуктазы и CYP11A1 в коже человека и мыши [8]. С помощью вестерн-блоттинга подтверждено наличие CYP11A1 и адренодоксинредуктазы в митохондриях кожи человека, а также в митохондриях, выделенных из культивируемых кератиноцитов, дермальных фибробластов и злокачественных клеток кожи [8]. В последующем установлено, что в культивируемых эпидермальных кератиноцитах 7DHC как экзогенного, так и эндогенного происхождения трансформируется в 7DHP с образованием 22(OH)7DHC и 20,22(OH)₂7DHC в качестве интермедиатов [9].

Продукция 7DHP из 7DHC как в условиях *ex vivo*, так и на уровне митохондрий обнаружена в плаценте человека – органе с относительно высоким уровнем экспрессии CYP11A1. Реакция ингибируется DL-аминоглютетимидом и 22R-гидроксихолестеролом, что доказывает участие в ней CYP11A1 [9]. Как и в ранее рассмотренных случаях, интермедиатами реакции были 22(OH)7DHC и 20,22(OH)₂7DHC.

Полученные данные о СҮР11А1-зависимом метаболизме 7DHC согласуются с хорошо описанным феноменом накопления 7DHP при синдроме Смита – Лемли – Опица (SLOS). Продукция 7DHP *in vivo* описана также у лошадей при синтезе эстрогена эквилина (Δ^7 -эстрона). В настоящее время эндогенные продукты СҮР11А1-зависимого метаболизма 7DHC, а именно 22(OH)7DHC, 20,22(OH)₂7DHC и 7DHP, обнаружены в крови и эпидермисе человека, а также в надпочечниках свиньи [10].

Указанные факты убедительно свидетельствуют о существовании в органах и тканях, содержащих СҮР11А1, нового стероидогенного пути:

$$7\text{DHC} \rightarrow 22(\text{OH})7\text{DHC} \rightarrow 20,22(\text{OH}),7\text{DHC} \rightarrow 7\text{DHP}.$$

В свою очередь, 7-дегидропрегненолон может подвергаться дальнейшему метаболизму в эндоплазматическом ретикулуме с образованием 17(OH)-7-дегидропрегненолона и 7-дегидропрогестерона в реакциях, катализируемых цитохромом P-450c17 или 3β-гидроксистероиддегидрогеназой (3βHSD) в зависимости от вида млекопитающих [7]. При инкубации 7DHP с грубым экстрактом кожи крыс образуется более полярный (в настоящее время – неидентифицированный) 5,7-диеновый продукт [7]. В условиях *ex vivo* в надпочечниках свиньи, кроме 7DHP, обнаружены минорные продукты, идентифицированные как 7-дегидропрогестерон (прегнан-4,7-диен-3,20-дион) и 17-гидрокси-7DHP, продукция которого не наблюдалась в надпочечниках крысы [7]. Полученные результаты согласуются с данными литературы, согласно которым СҮР17A1 в реконструированной системе обеспечивает конверсию 7DHP в 17(OH)7DHP и Δ^7 -дегидроэпиандростерон [13]. В то же время СҮР21A2, как и в случае с прегненолоном, по-видимому, не способен использовать 7DHP в качестве субстрата, так как в условиях *in vitro* и *ex vivo* 21(OH)7DHP, как продукт реакции, не детектируется [7, 13].

Следует отметить, что в биологических жидкостях больных с синдромом Смита – Лемли – Опица, помимо 7DHP, обнаружены его гидроксипроизводные, включая 17(OH)-, 20(OH)-, 21(OH)и 17,20(OH)₂7DHP, а также 7-дегидропрогестерон [11, 12]. Данный факт подтверждает существование альтернативного пути метаболизма 7DHC, инициируемого CYP11A1 и предполагающего участие других классических ферментов стероидогенеза.

Установлены различия в СҮР11А1-зависимом метаболизме 7DHC и его растительного аналога – эргостерола ((22Е)-эргоста-5,7,22-триен-3 β -ола) [14]. Эргостерол – 5,7-диеновый стероидный предшественник витамина D₂ – синтезируется в грибах и фитопланктоне и отличается от 7DHC присутствием двойной связи (C22=C23) в боковой цепи и наличием метильной группы в положении C24. В отличие от 7DHC при метаболизме эргостерола в реконструированной системе с очищенным бычьим CYP11A1 или в митохондриях надпочечников крысы 7DHP в качестве конечного продукта не обнаруживается [14]. Основным продуктом CYP11A1-зависимой реакции является дигидроксиэргостерол, идентифицированные с помощью ЯМР-анализа как 17 α ,24-дигидроксиэргостерол и 24-гидроксиэргостерол соответственно. Таким образом, структурные особенности эргостерола (двойная связь (C22=C23) в боковой цепи и метильная группа в положении C24) препятствуют 20,22-лиазной реакции и смещают гидроксилазную активность с положений C20 и C22 на C24 и C17.

Вызывает интерес наличие межвидовых различий в CYP11A1-зависимом метаболизме эргостерола. В реконструированной системе с очищенным CYP11A1 человека двойная связь C22=C23 эргостерола подвергается эпоксидированию с образованием 22R,23S-эпоксиэргоста-5,7-диен-3β,20α-диола. Другим основным продуктом является 3β,23S-дигидроксиэргоста-5,7-диен-22-он [15].

Альтернативный метаболизм стеринов как источник биологически активных соединений. 7-Дегидропрегненолон, являющийся конечным продуктом CYP11A1-зависимой биотрансформации

100 Q 5574 - 95 rem!

7-дегидрохолестерола, обладает биологической активностью, выражающейся в ингибировании пролиферации эпидермальных кератиноцитов (HaCaT) и бессмертной линии нормальных эпидермальных меланоцитов (PIG1), в подавлении способности клеток меланомы человека SKMEL-188 и хомяка AbC1 образовывать колонии в мягком агаре и в предотвращении окислительного повреждения белков в митохондриях, инкубировавшихся в системе Fe²⁺/аскорбат [7, 16]. В свою очередь, 17 α ,24дигидроксиэргостерол, в отличие от эргостерола, способен ингибировать синтез ДНК в эпидермальных кератиноцитах (HaCaT) человека [14].

СҮР11А1-зависимый метаболизм секостероидов (стероидов с раскрытым кольцом)

Классические представления о метаболизме витамина **D**₃. Витамин D₃, образовавшийся в коже из 7DHC, активируется в результате двух последовательных реакций гидроксилирования по положениям C25 и C1:

$D3 \rightarrow 25(OH)D3 \rightarrow 1,25(OH)_2D3.$

25-Гидроксилирование витамина D₃ у млекопитающих осуществляется митохондриальным СҮР27А1 (человек и другие виды (>56)), а также микросомальными СҮР2D25 (свинья), СҮР3A4 (человек), СҮР2R1 (человек и другие виды (>47)), СҮР2J2 (человек), СҮР2J3 (крыса) и СҮР2C11 (крыса) [17]. Реакция протекает главным образом в печени, после чего 25(OH)D3 попадает в системный кровоток и в почках подвергается 1α-гидроксилированию.

У млекопитающих (человек и другие виды (>39)) 1 α -гидроксилирование 25(OH)D3 обеспечивается преимущественно митохондриальным СҮР27В1. В свою очередь, митохондриальный СҮР24А1 катализирует гидроксилирование 25(OH)D3 и 1,25(OH)₂D3 по положениям C24 или C23 с образованием менее активных 24,25-дигидроксивитамина D₃, 1 α ,24,25-тригидроксивитамина D₃ и 1 α ,25(OH)₂D3-26,23-лактона соответственно [18, 19]. Микросомальный СҮР3А4 способен гидроксилировать 1 α -гидроксивитамин D₃ (D₂) по положениям C25 и C24 [20, 21], а в случае 1 α ,25(OH)₂D3 – по положениям C23 и C24 [22]. Интересно, что, в отличие от митохондриального СҮР24А1, катализирующего C-23S-и C-24R-гидроксилирование 1 α ,25(OH)₂D3, для микросомального СҮР3А4 катализирующего C-23S-и C-24R и C-24S гидроксипроизводных [18, 22]. Кроме того, СҮР3А4 катализирует реакцию гидроксилирование 25(OH)D3 по C4-положению с образованием 4 β ,25(OH)₂D3 [23].

Реакции гидроксилирования по положениям C25 и C1 с образованием 1α,25-дигидроксивитамина D₃ могут также протекать в эпидермисе [24, 25].

Альтернативные пути метаболизма секостероидов с участием СУР11А1. В начале XX в. появились экспериментальные данные, указывающие на то, что в митохондриях в гидроксилировании витамина D₃ может участвовать не только СУР27А1, СУР27В1 и СУР24А1, но и СУР11А1. Так, очищенный бычий цитохром СУР11А1 в реконструированной бесклеточной системе гидроксилировал боковую цепь витамина D₃ в положениях C20 и C22 без последующего разрыва связи C20=C22 с образованием в качестве продуктов реакции 20(OH)D3 и 20,22(OH)₂D3 [2].

Обнаруженный феномен инициировал изучение СҮР11А1-зависимого метаболизма витамина D₃ на субклеточном и органотканевом уровнях организации живой материи. В результате было установлено, что инкубация митохондрий надпочечников крысы с витамином D₃ приводит к образованию 10 метаболитов, спектр поглощения которых имеет максимум при 265 нм и минимум при 228 нм, что свидетельствует о присутствии в их структуре *иис*-5,7,10(19)-триенового хромофора, типичного для витамин-D-подобных продуктов [26]. Анализ продуктов методом жидкостной хроматографии – массспектрометрии (LC – MS) показал наличие во всех случаях молекулярных ионов $[M+1]^+$ с m/z = 401 и $[M + 1 - H_2O]^+$ с m/z = 383, характерных для гидроксипроизводных витамина D₃. Соотношение ионов $[M + 1]^+$ и $[M + 1 - H_2O]^+$ было различным у продуктов с разным временем удерживания (RT), что указывало на имеющиеся отличия в способности терять воду при ионизации в зависимости от локализации и изомерии положения гидроксильной группы. Один из продуктов был идентифицирован как 25(OH)D3 на основании масс-спектрометрии, УФ-спектра и времени удерживания в сравнении с аутентичным стандартом. Вовлеченность СУР11А1 в метаболизм витамина D₃ в митохондриях надпочечников была подтверждена ингибированием ферментативной реакции с помощью DL-аминоглютетимида – специфического ингибитора цитохрома P450scc [27]. DL-аминоглютетимид существенно ингибировал накопление трех продуктов, незначительно подавлял образование двух продуктов и не влиял на образование 25(OH)D3 в митохондриях [26].

Конверсия витамина D₃ в 25(OH)D3 и 20(OH)D3 наблюдается также в митохондриях надпочечников быка и в митохондриях плаценты человека [28]. 22R-гидроксихолестерол (прочно связывающийся с активным центром интермедиат реакции расщепления боковой цепи холестерола) полностью ингибирует образование 20(OH)D3 в митохондриях плаценты и не влияет на продукцию 25(OH)D3, что указывает на участие CYP11A1 в гидроксилировании витамина D₃ только по C20-положению [29].

57 y ~ 95 . 1em! (101

Гидроксилирование витамина D₃ по C25-положению, по-видимому, обеспечивается CYP27A1 – митохондриальным цитохромом P450, экспрессия которого обнаружена в надпочечниках.

В условиях *ex vivo* витамин D_3 метаболизируется надпочечниками с образованием 25(OH)D3, 20(OH)D3 и 20,23(OH)₂D3, которые были идентифицированы на основании масс-спектрометрии, УФ-спектра и времени удерживания в сравнении с аутентичными стандартами. В случае плаценты, кроме данных гидроксилированных производных, обнаружена незначительная продукция 22(OH)D3 [28].

Таким образом, в надпочечниках крысы CYP11A1 гидроксилирует витамин D₃ по положениям C20 и C23. В соответствии с данными ЯМР-анализа в результате C20-гидроксилирования образуется S-изомер 20(OH)D3 (20S(OH)D3) [26]. Вызывает интерес, что, по данным [2], очищенный бычий цитохром СУР11А1 в реконструированной бесклеточной системе гидроксилировал боковую цепь витамина D₃ в положениях C20 и C22 с генерацией 20(OH)D3 и 20,22(OH),D3 в качестве продуктов реакции, в то время как, согласно нашим результатам, в надпочечниках продуцируются 20(OH)D3 и 20,23(OH)₂D3. В дальнейшем с использованием ЯМР-анализа было показано, что очищенный бычий цитохром СУР11А1 в реконструированной бесклеточной системе действительно катализирует образование 20,23(OH),D3 [30], что подтверждает результаты наших исследований на органотканевом уровне. В отличие от СУР11А1-зависимого метаболизма холестерола или 7DHC начальное гидроксилирование витамина D₃ протекает по положению С20. В пользу этого свидетельствуют результаты молекулярного докинга витамина D₃ в каталитическом центре кристаллической структуры СУР11А1 человека, согласно которым раскрытое кольцо B обусловливает вытянутую конформацию витамина D_3 , благоприятствующую расположению углерода С20, а не С22 над железом гема [31]. Отсутствие гидроксилирования по положению C22 в случае витамина D₃ объясняет неспособность CYP11A1 катализировать разрыв связи С20—С22 (20,22-лиазная реакция).

Полученные результаты позволяют предложить следующую схему альтернативного пути метаболизма витамина D₃ с участием CYP11A1:

$D3 \rightarrow 20(OH)D3 \rightarrow 20,23(OH),D3$.

Эндогенный 20(OH)D3, являющийся основным гидроксилированным продуктом CYP11A1опосредованного метаболизма витамина D₃ в плаценте и надпочечниках, обнаружен в сыворотке крови человека, что подтверждает высокую вероятность реализации предложенной схемы в условиях *in vitro* [28].

В свою очередь, образовавшийся 20(OH)D3 может метаболизироваться СҮР27А1 и СҮР24А. В условиях *in vitro* показано, что рекомбинантный СҮР27А1 человека гидроксилирует 20(OH)D3 с образованием 20,25(OH)₂D3 и 20,26(OH)₂D3, а СҮР24А1 крысы обеспечивает конверсию 20(OH)D3 в 20,24(OH)₂D3 (основной продукт) и 20,25(OH)₂D3 (минорный продукт) [32, 33].

Следует отметить, что гидроксигруппа по положению C25 защищает секостероид от CYP11A1зависимого гидроксилирования боковой цепи. Установлено, что CYP11A1 не использует в качестве субстрата 25(OH)D3 и, соответственно, не препятствует CYP27B1-зависимой конверсии 25(OH)D3 в 1,25(OH)₂D3 [26]. В то же время CYP11A1 способен гидроксилировать по положению C20 биологически инертный 1(OH)D3 с образованием биологически активного 1,20(OH)₂D3 [34].

Для выяснения влияния структуры субстрата на СҮР11А1-зависимое формирование метаболического профиля стероидов был изучен метаболизм витамина D₂, который попадает в организм человека и животных с пищей [35]. На системном уровне витамин D₂, как и витамин D₃, подвергается последовательному гидроксилированию по положениям C25 и C1 в печени и почках соответственно с образованием биологически активного 1,25(OH)₂D2 [36, 37].

Установлено, что инкубация митохондрий надпочечников крысы с витамином D_2 приводит к образованию 6 метаболитов, спектр поглощения которых имеет максимум при 265 нм и минимум при 228 нм, что указывает на наличие в их структуре *цис*-5,7,10(19)-триенового хромофора, типичного для витамин-D-подобных продуктов. LC-MS-анализ продуктов показал наличие во всех случаях молекулярных ионов $[M+1]^+$ с m/z = 413 и $[M+1-H_2O]^+$ с m/z = 395, характерных для гидроксипроизводных витамина D_2 . Вовлеченность СҮР11А1 в метаболизм витамина D_2 в митохондриях надпочечников была подтверждена ингибированием ферментативной реакции с помощью DL-аминоглютетимида. Установлено, что DL-аминоглютетимид ингибирует накопление 5 продуктов с наиболее выраженным эффектом в случае одного из метаболитов [38]. Способность митохондрий надпочечников метаболизировать витамин D_2 подтверждается результатами анализа его метаболизма в надпочечниках крыс в условиях *ех vivo*, согласно которым при инкубации надпочечников с витамином D_2 образуется 20(OH)D2 [39].

При инкубации с фрагментами плаценты человека образуются 20(OH)D2, 17,20(OH)₂D2, 1,20(OH)₂D2 и 25(OH)D2. Аналогичные продукты обнаружены после добавления витамина D₂ к эпидермальным кератиноцитам (неонатальным и иммортализованным кератиноцитам человека

HaCaT) либо эпителиальным раковым клеткам толстой кишки человека Caco-2. Конверсия витамина D₂ в 20(OH)D2, 17,20(OH)₂D2 и 1,20(OH)₂D2 митохондриями плаценты полностью блокируется 22R-гидроксихолестеролом, являющимся интермедиатом реакции превращения холестерола в прегненолон и специфическим конкурентным ингибитором цитохрома P450scc (CYP11A1) по отношению к другим субстратам [40].

Структура витамина D_2 отличается от структуры витамина D_3 тем, что его боковая цепь имеет метильную группу по положению C24 и двойную связь C22=C23. Эти структурные особенности, повидимому, препятствуют гидроксилированию витамина D_2 по положению C23:

$D2 \rightarrow 20(OH)D2 \rightarrow 17,20(OH)_2D2.$

Альтернативный метаболизм секостероидов как источник биологически активных соединений. Гидроксилированные по положению C20 производные витаминов D₂ и D₃ проявляют биологическую активность, в ряде случаев сопоставимую с таковой гидроксипроизводных, образующихся при классическом варианте метаболизма.

Установлено, что 20(OH)D3 ингибирует пролиферацию эпидермальных кератиноцитов, влияет на экспрессию генов, вовлеченных в дифференциацию кератиноцитов (стимулирует экспрессию инволюкрина и ингибирует экспрессию цитокератина 14). 20(OH)D3 ингибирует экспрессию генов CYP27B1 и CYP27A1, активирует экспрессию CYP24 в эпидермальных кератиноцитах, что указывает на его потенциальную роль в регуляции образования биологически активного 1,25(OH)₂D3. Обнаруженные эффекты 20(OH)D3 реализуются по рецепторно-опосредованному механизму через стимуляцию связывания белкового комплекса VDR с витамин-D-регуляторными элементами промоторных областей целевых генов (VDRE) [41].

В свою очередь, 20(OH)D2 и 17,20(OH)₂D2, по сравнению с витамином D₂, в большей степени ингибируют синтез ДНК в случае кератиноцитов человека HaCaT [38]. 20(OH)D2 ингибирует пролиферацию фибробластов человека, нормальных и злокачественных меланоцитов, кератиноцитов и лейкемических клеток [42, 43].

Таким образом, в настоящее время экспериментальным путем получены доказательства существования у млекопитающих альтернативных CYP11A1-зависимых путей метаболизма некоторых стеринов и секостероидов. CYP11A1 способен метаболизировать не только холестерол, но и ряд других стероидов. В качестве субстратов могут выступать как 7DHC и эргостерол, так и их производные – витамины D_3 и D_2 . Структура субстрата влияет и на региоселективность гидроксилирования, и на возможность протекания характерной для CYP11A1 20,22-лиазной реакции. 7DHC с немодифицированной боковой цепью и Δ^7 двойной связью в *B*-кольце способен эффективно метаболизироваться с разрывом боковой цепи. В свою очередь, эргостерол, имеющий Δ^7 двойную связь в *B*-кольце, не подвергается лиазной реакции из-за присутствия в боковой цепи двойной связи C22=C23, которая создает неблагоприятные условия для гидроксилирования по положению C22.

В отличие от 7DHC витамин D не участвует в 20,22-лиазной реакции, боковая цепь подвергается только гидроксилированию. Структурные отличия между витаминами D_2 и D_3 обусловливают разную региоселективность гидроксилирования боковой цепи.

Альтернативный метаболизм стеринов и секостероидов, обеспечиваемый СҮР11А1, приводит к образованию биологически активных соединений.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК (REFERENCES)

1. Slominski A. T., Li W., Kim T. K., Semak I., Wang J., Zjawiony J. K., Tuckey R. C. Novel activities of CYP11A1 and their potential physiological significance // J. Steroid Biochem. Mol. Biol. 2015. Vol. 151. P. 25–37 [Slominski A. T., Li W., Kim T. K., Semak I., Wang J., Zjawiony J. K., Tuckey R. C. Novel activities of CYP11A1 and their potential physiological significance. J. Steroid Biochem. Mol. Biol. 2015. Vol. 151. P. 25–37 (in Engl.)].

2. *Guryev O., Carvalho R. A., Usanov S., Gilep A., Estabrook R. W.* A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1) // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100 (25). P. 14754–14759 [Guryev O., Carvalho R. A., Usanov S., Gilep A., Estabrook R. W. A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). *Proc. Natl. Acad. Sci. USA.* 2003. Vol. 100 (25). P. 14754–14759 (in Engl.)].

3. *Glossmann H. H.* Origin of 7-Dehydrocholesterol (Provitamin D) in the Skin // J. Invest. Dermatol. 2010. Vol. 130. P. 2139–2141 [Glossmann H. H. Origin of 7-Dehydrocholesterol (Provitamin D) in the Skin. J. Invest. Dermatol. 2010. Vol. 130. P. 2139–2141 (in Engl.)].

4. Moody J. P., Humphries C. A., Allan S. M., Paterson C. R. Determination of 7-dehydrocholesterol in human skin by highperformance liquid chromatography // J. Chromatogr. 1990. Vol. 530 (1). P. 19–27 [Moody J. P., Humphries C. A., Allan S. M., Paterson C. R. Determination of 7-dehydrocholesterol in human skin by high-performance liquid chromatography. J. Chromatogr. 1990. Vol. 530 (1). P. 19–27 (in Engl.)].

(0 103 579 - 95 .uem!

5. Yasumura M., Okano T., Mizuno K., Kobayashi T. Identification and determination of 7-dehydrocholesterol in rat skin // J. Nutr. Sci. Vitaminol. 1977. Vol. 23 (6). P. 513–523 [Yasumura M., Okano T., Mizuno K., Kobayashi T. Identification and determination of 7-dehydrocholesterol in rat skin. J. Nutr. Sci. Vitaminol. 1977. Vol. 23 (6). P. 513–523 (in Engl.)].

6. *Moebius F. F., Fitzky B. U., Lee J.* Molecular cloning and expression of the human delta7-sterol reductase // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. P. 1899–1902 [Moebius F. F., Fitzky B. U., Lee J. Molecular cloning and expression of the human delta7-sterol reductase. *Proc. Natl. Acad. Sci. USA*. 1998. Vol. 95. P. 1899–1902 (in Engl.)].

7. Slominski A. T., Zmijewski M. A., Semak I., Sweatman T., Janjetovic Z., Li W., Zjawiony J. K., Tuckey R. C. Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin // PLoS One. 2009. Vol. 4, № 2. e4309. DOI: 10.1371/journal.pone. 0004309 [Slominski A. T., Zmijewski M. A., Semak I., Sweatman T., Janjetovic Z., Li W., Zjawiony J. K., Tuckey R. C. Sequential metabolism of 7-dehydrocholesterol to steroidal 5,7-dienes in adrenal glands and its biological implication in the skin. *PLoS One*. 2009. Vol. 4, No. 2. e4309. DOI: 10.1371/journal.pone. 0004309 (in Engl.)].

8. Slominski A., Zjawiony J., Wortsman J., Semak I., Stewart J., Pisarchik A., Sweatman T., Marcos J., Dunbar C., Tuckey R. C. A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin // Eur. J. Biochem. 2004. Vol. 271, № 21. P. 4178–4188 [Slominski A., Zjawiony J., Wortsman J., Semak I., Stewart J., Pisarchik A., Sweatman T., Marcos J., Dunbar C., Tuckey R. C. A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. *Eur. J. Biochem.* 2004. Vol. 271, No. 21. P. 4178–4188 (in Engl.)].

9. Slominski A. T., Kim T. K., Chen J., Nguyen M. N., Li W., Yates C. R., Sweatman T., Janjetovic Z., Tuckey R. C. Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes // Int. J. Biochem. Cell. Biol. 2012. Vol. 44, № 11. P. 2003–2018 [Slominski A. T., Kim T. K., Chen J., Nguyen M. N., Li W., Yates C. R., Sweatman T., Janjetovic Z., Tuckey R. C. Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes. *Int. J. Biochem. Cell. Biol.* 2012. Vol. 44, No. 11. P. 2003–2018 (in Engl.)].

10. Slominski A. T., Kim T. K., Li W., Postlethwaite A., Tieu E. W., Tang E. K., Tuckey R. C. Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland // Sci. Rep. 2015. Vol. 5. 14875. DOI: 10.1038/srep14875.

11. Shackleton C., Roitman E., Guo L. W., Wilson W. K., Porter F. D. Identification of 7(8) and 8(9) unsaturated adrenal steroid metabolites produced by patients with 7-dehydrosterol-delta7-reductase deficiency (Smith – Lemli – Opitz syndrome) // J. Steroid Biochem. Mol. Biol. 2002. Vol. 82. P. 225–232 [Shackleton C., Roitman E., Guo L. W., Wilson W. K., Porter F. D. Identification of 7(8) and 8(9) unsaturated adrenal steroid metabolites produced by patients with 7-dehydrosterol-delta7-reductase deficiency (Smith – Lemli – Opitz syndrome). J. Steroid Biochem. Mol. Biol. 2002. Vol. 82. P. 225–232 [Shackleton C., Roitman E., Guo L. W., Wilson W. K., Porter F. D. Identification of 7(8) and 8(9) unsaturated adrenal steroid metabolites produced by patients with 7-dehydrosterol-delta7-reductase deficiency (Smith – Lemli – Opitz syndrome). J. Steroid Biochem. Mol. Biol. 2002. Vol. 82. P. 225–232 (in Engl.)].

12. *Marcos J., Guo L. W., Wilson W. K., Porter F. D., Shackleton C.* The implications of 7-dehydrosterol-7-reductase deficiency (Smith – Lemli – Opitz syndrome) to neurosteroid production // Steroids. 2004. Vol. 69. P. 51–60 [Marcos J., Guo L.W., Wilson W. K., Porter F. D., Shackleton C. The implications of 7-dehydrosterol-7-reductase deficiency (Smith – Lemli – Opitz syndrome) to neurosteroid production. *Steroids*. 2004. Vol. 69. P. 51–60 (in Engl.)].

13. Sushko T. A., Gilep A. A., Yantsevich A. V., Usanov S. A. Role of microsomal steroid hydroxylases in Δ7-steroid biosynthesis // Biochemistry. 2013. Vol. 78. P. 282–289 [Sushko T. A., Gilep A. A., Yantsevich A. V., Usanov S. A. Role of microsomal steroid hydroxylases in Δ7-steroid biosynthesis. *Biochemistry*. 2013. Vol. 78. P. 282–289 (in Engl.)].

14. Slominski A., Semak I., Zjawiony J., Wortsman J., Gandy M. N., Li J., Zbytek B., Li W., Tuckey R. C. Enzymatic metabolism of ergosterol by cytochrome P450scc to biologically active 17alpha,24-dihydroxyergosterol // Chem. Biol. 2005. Vol. 12, № 8. P. 931–939 [Slominski A., Semak I., Zjawiony J., Wortsman J., Gandy M. N., Li J., Zbytek B., Li W., Tuckey R. C. Enzymatic metabolism of ergosterol by cytochrome P450scc to biologically active 17alpha,24-dihydroxyergosterol. *Chem. Biol.* 2005. Vol. 12, № 8. P. 931–939 [Slominski A., Semak I., Zjawiony J., Wortsman J., Gandy M. N., Li J., Zbytek B., Li W., Tuckey R. C. Enzymatic metabolism of ergosterol by cytochrome P450scc to biologically active 17alpha,24-dihydroxyergosterol. *Chem. Biol.* 2005. Vol. 12, No. 8. P. 931–939 (in Engl.)].

15. Tuckey R. C., Nguyen M. N., Chen J., Slominski A. T., Baldisseri D. M., Tieu E. W., Zjawiony J. K., Li W. Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol // Drug Metab. Dispos. 2012. Vol. 40, № 3. P. 436–444 [Tuckey R. C., Nguyen M. N., Chen J., Slominski A. T., Baldisseri D. M., Tieu E. W., Zjawiony J. K., Li W. Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol. Drug Metab. Dispos. 2012. Vol. 40, No. 3. P. 436–444 (in Engl.)].

16. Slominski A., Kim T. K., Zmijewski M. A., Janjetovic Z., Li W., Chen J., Kusniatsova E. I., Semak I., Postlethwaite A., Miller D. D., Zjawiony J. K., Tuckey R. C. Novel vitamin D photoproducts and their precursors in the skin // Dermato-Endocrinology. 2013. Vol. 5, № 1. P. 7–19 [Slominski A., Kim T. K., Zmijewski M. A., Janjetovic Z., Li W., Chen J., Kusniatsova E. I., Semak I., Postlethwaite A., Miller D. D., Zjawiony J. K., Tuckey R. C. Novel vitamin D photoproducts and their precursors in the skin. *Dermato-Endocrinology*. 2013. Vol. 5, No. 1. P. 7–19 (in Engl.)].

17. Jones G., Prosser D. E., Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D // J. Lipid Res. 2014. Vol. 55, № 1. P. 13–31 [Jones G., Prosser D. E., Kaufmann M. Cytochrome P450-mediated metabolism of vitamin D. J. Lipid Res. 2014. Vol. 55, No. 1. P. 13–31 (in Engl.)].

18. Sakaki T., Sawada N., Komai K., Shiozawa S., Yamada S., Yamamoto K., Ohyama Y., Inouye K. Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24 // J. Biochem. 2000. Vol. 267. P. 6158–6165 [Sakaki T., Sawada N., Komai K., Shiozawa S., Yamada S., Yamamoto K., Ohyama Y., Inouye K. Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. J. Biochem. 2000. Vol. 267. P. 6158–6165 (in Engl.)].

19. Prosser D. E., Jones G. Enzymes involved in the activation and inactivation of vitamin D // Trends Biochem. Sci. 2004. Vol. 29, № 12. P. 664–673 [Prosser D. E., Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem. Sci. 2004. Vol. 29, No. 12. P. 664–673 (in Engl.)].

20. *Gupta R. P., He Y. A., Patrick K. S., Halpert J. R., Bell N. H.* CYP3A4 is a vitamin D-24- and 25-hydroxylase: analysis of structure function by site-directed mutagenesis // J. Clin. Endocrinol. Metab. 2005. Vol. 90, № 2. P. 1210–1219 [Gupta R. P., He Y. A., Patrick K. S., Halpert J. R., Bell N. H. CYP3A4 is a vitamin D-24- and 25-hydroxylase: analysis of structure function by site-directed mutagenesis. J. Clin. Endocrinol. Metab. 2005. Vol. 90, No. 2. P. 1210–1219 [Gupta R. P., He Y. A., Patrick K. S., Halpert J. R., Bell N. H. CYP3A4 is a vitamin D-24- and 25-hydroxylase: analysis of structure function by site-directed mutagenesis. J. Clin. Endocrinol. Metab. 2005. Vol. 90, No. 2. P. 1210–1219 (in Engl.)].

21. *Gupta R. P., Hollis B. W., Patel S. B., Patrick K. S., Bell N. H.* CYP3A4 is a human microsomal vitamin D-25-hydroxylase // J. Bone Miner. Res. 2004. Vol. 19, № 4. P. 680–688 [Gupta R. P., Hollis B. W., Patel S. B., Patrick K. S., Bell N. H. CYP3A4 is a human microsomal vitamin D-25-hydroxylase. J. Bone Miner. Res. 2004. Vol. 19, No. 4. P. 680–688 (in Engl.)].

104STY_95.nem!単

22. Xu Y., Hashizume T., Shuhart M. C., Davis C. L., Nelson W. L., Sakaki T., Kalhorn T. F., Watkins P. B., Schuetz E. G., Thummel K. E. Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1α,25(OH)2D3: implications for drug induced osteomalacia // Mol. Pharmacol. 2006. Vol. 69. P. 56–65 [Xu Y., Hashizume T., Shuhart M. C., Davis C. L., Nelson W. L., Sakaki T., Kalhorn T. F., Watkins P. B., Schuetz E. G., Thummel K. E. Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1α,25(OH)2D3: implications for drug induced osteomalacia. *Mol. Pharmacol.* 2006. Vol. 69. P. 56–65 (in Engl.)].

23. Wang Z., Lin Y. S., Zheng X. E., Senn T., Hashizume T., Scian M., Dickmann L. J., Nelson S. D., Baillie T. A., Hebert M. F., Blough D., Davis C. L., Thummel K. E. An inducible cytochrome P450 3A4-dependent vitamin D catabolic pathway // Mol. Pharmacol. 2012. Vol. 81, № 4. P. 498–509 [Wang Z., Lin Y. S., Zheng X. E., Senn T., Hashizume T., Scian M., Dickmann L. J., Nelson S. D., Baillie T. A., Hebert M. F., Blough D., Davis C. L., Thummel K. E. An inducible cytochrome P450 3A4-dependent vitamin D catabolic pathway. *Mol. Pharmacol.* 2012. Vol. 81, No. 4. P. 498–509 (in Engl.)].

24. Bikle D. D., Nemanic M. K., Gee E., Elias P. 1,25-Dihydroxyvitamin D3 production by human keratinocytes. Kinetics and regulation // J. Clin. Invest. 1986. Vol. 78. P. 557–566 [Bikle D. D., Nemanic M. K., Gee E., Elias P. 1,25-Dihydroxyvitamin D3 production by human keratinocytes. Kinetics and regulation. J. Clin. Invest. 1986. Vol. 78. P. 557–566 (in Engl.)].

25. Lehmann B., Sauter W., Knuschke P., Dressler S., Meurer M. Demonstration of UVB-induced synthesis of 1alpha,25dihydroxyvitamin D3 (calcitriol) in human skin by microdialysis // Arch. Dermatol. Res. 2003. Vol. 295. P. 24–28 [Lehmann B., Sauter W., Knuschke P., Dressler S., Meurer M. Demonstration of UVB-induced synthesis of 1alpha,25-dihydroxyvitamin D3 (calcitriol) in human skin by microdialysis. Arch. Dermatol. Res. 2003. Vol. 295. P. 24–28 (in Engl.)].

26. Slominski A., Semak I., Zjawiony J., Wortsman J., Li W., Szczesniewski A., Tuckey R. C. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism // FEBS J. 2005. Vol. 272, № 16. P. 4080–4090 [Slominski A., Semak I., Zjawiony J., Wortsman J., Li W., Szczesniewski A., Tuckey R. C. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. *FEBS J.* 2005. Vol. 272, No. 16. P. 4080–4090 (in Engl.)].

27. *Toaff M. E., Schleyer H., Strauss J. F.* Metabolism of 25-hydroxycholesterol by rat luteal mitochondria and dispersed cells // Endocrinology. 1982. Vol. 111. P. 1785–1790 [Toaff M. E., Schleyer H., Strauss J. F. Metabolism of 25-hydroxycholesterol by rat luteal mitochondria and dispersed cells. *Endocrinology*. 1982. Vol. 111. P. 1785–1790 (in Engl.)].

28. Slominski A. T., Kim T. K., Shehabi H. Z., Semak I., Tang E. K., Nguyen M. N., Benson H. A., Korik E., Janjetovic Z., Chen J., Yates C. R., Postlethwaite A., Li W., Tuckey R. C. In vivo evidence for a novel pathway of vitamin D_3 metabolism initiated by P450scc and modified by CYP27B1 // FASEB J. 2012. Vol. 26, Nº 9. P. 3901–3915 [Slominski A. T., Kim T. K., Shehabi H. Z., Semak I., Tang E. K., Nguyen M. N., Benson H. A., Korik E., Janjetovic Z., Chen J., Yates C. R., Postlethwaite A., Li W., Tuckey R. C. In vivo evidence for a novel pathway of vitamin D_3 metabolism initiated by P450scc and modified by CYP27B1. FASEB J. 2012. Vol. 26, No. 9. P. 3901–3915 (in Engl.)].

29. Tuckey R. C. Progesterone synthesis by the human placenta // Placenta. 2005. Vol. 26. P. 273–281 [Tuckey R. C. Progesterone synthesis by the human placenta. *Placenta*. 2005. Vol. 26. P. 273–281 (in Engl.)].

30. Tuckey R. C., Li W., Zjawiony J. K., Zmijewski M. A., Nguyen M. N., Sweatman T., Miller D., Slominski A. Pathways and products for the metabolism of vitamin D3 by cytochrome P450scc // FEBS J. 2008. Vol. 275, № 10. P. 2585–2596 [Tuckey R. C., Li W., Zjawiony J. K., Zmijewski M. A., Nguyen M. N., Sweatman T., Miller D., Slominski A. Pathways and products for the metabolism of vitamin D3 by cytochrome P450scc. FEBS J. 2008. Vol. 275, No. 10. P. 2585–2596 (in Engl.)].

31. Strushkevich N., MacKenzie F., Cherkesova T., Grabovec I., Usanov S., Park H. W. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108, № 25. P. 10139–10143 [Strushkevich N., MacKenzie F., Cherkesova T., Grabovec I., Usanov S., Park H. W. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. *Proc. Natl. Acad. Sci. USA*. 2011. Vol. 108, No. 25. P. 10139–10143 [MacKenzie F., Cherkesova T., Grabovec I., Usanov S., Park H. W. Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system. *Proc. Natl. Acad. Sci. USA*. 2011. Vol. 108, No. 25. P. 10139–10143 (in Engl.)].

32. *Tieu E. W., Li W., Chen J., Baldisseri D. M., Slominski A. T., Tuckey R. C.* Metabolism of cholesterol, vitamin D3 and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1 // J. Steroid Biochem. Mol. Biol. 2012. Vol. 129. P. 163–171 [Tieu E. W., Li W., Chen J., Baldisseri D. M., Slominski A. T., Tuckey R. C. Metabolism of cholesterol, vitamin D3 and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1. *J. Steroid Biochem. Mol. Biol.* 2012. Vol. 129. P. 163–171 [Tieu E. W., Li W., Chen J., Baldisseri D. M., Slominski A. T., Tuckey R. C. Metabolism of cholesterol, vitamin D3 and 20-hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1. *J. Steroid Biochem. Mol. Biol.* 2012. Vol. 129. P. 163–171 (in Engl.)].

33. *Tieu E. W., Tang E. K., Chen J., Li W., Nguyen M. N., Janjetovic Z., Slominski A., Tuckey R. C.* Rat CYP24A1 acts on 20-hydroxyvitamin D(3) producing hydroxylated products with increased biological activity // Biochem. Pharmacol. 2012. Vol. 84. P. 1696–1704 [Tieu E. W., Tang E. K., Chen J., Li W., Nguyen M. N., Janjetovic Z., Slominski A., Tuckey R. C. Rat CYP24A1 acts on 20-hydroxyvitamin D(3) producing hydroxylated products with increased biological activity. *Biochem. Pharmacol.* 2012. Vol. 84. P. 1696–1704 (in Engl.)].

34. Tuckey R. C., Janjetovic Z., Li W., Nguyen M. N., Zmijewski M. A., Zjawiony J., Slominski A. Metabolism of 1alphahydroxyvitamin D3 by cytochrome P450scc to biologically active 1alpha,20-dihydroxyvitamin D3 // J. Steroid Biochem. Mol. Biol. 2008. Vol. 112. P. 213–219 [Tuckey R. C., Janjetovic Z., Li W., Nguyen M. N., Zmijewski M. A., Zjawiony J., Slominski A. Metabolism of 1alpha-hydroxyvitamin D3 by cytochrome P450scc to biologically active 1alpha,20-dihydroxyvitamin D3. J. Steroid Biochem. Mol. Biol. 2008. Vol. 112. P. 213–219 [in Engl.]].

35. Bikle D. D. Vitamin D: an ancient hormone // Exp. Dermatol. 2011. Vol. 20. P. 7–13 [Bikle D. D. Vitamin D: an ancient hormone. Exp. Dermatol. 2011. Vol. 20. P. 7–13 (in Engl.)].

36. Holick M. F. Vitamin D: A millenium perspective // J. Cell Biochem. 2003. Vol. 88. P. 296–307 [Holick M. F. Vitamin D: A millenium perspective. J. Cell Biochem. 2003. Vol. 88. P. 296–307 (in Engl.)].

37. Zhu J., DeLuca H. F. Vitamin D 25-hydroxylase – Four decades of searching, are we there yet? // Arch. Biochem. Biophys. 2012. Vol. 523. P. 30–36 [Zhu J., DeLuca H. F. Vitamin D 25-hydroxylase – Four decades of searching, are we there yet? Arch. Biochem. Biophys. 2012. Vol. 523. P. 30–36 (in Engl.)].

38. Slominski A., Semak I., Wortsman J., Zjawiony J., Li W., Zbytek B., Tuckey R. C. An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2 // FEBS J. 2006. Vol. 273, № 13. P. 2891–2901 [Slominski A., Semak I., Wortsman J., Zjawiony J., Li W., Zbytek B., Tuckey R. C. An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2. FEBS J. 2006. Vol. 273, No. 13. P. 2891–2901 (in Engl.)].

39. Slominski A. T., Kim T. K., Shehabi H. Z., Tang E. K., Benson H. A., Semak I., Lin Z. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland // Mol. Cell Endocrinol.

(g 105 **▼***TY* - 95 .1em!_

2014. Vol. 383, № 1/2. P. 181–192 [Slominski A. T., Kim T. K., Shehabi H. Z., Tang E. K., Benson H. A., Semak I., Lin Z. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland. *Mol. Cell Endocrinol.* 2014. Vol. 383, No. 1/2. P. 181–192 (in Engl.)].

40. *Tuckey R. C., Cameron K. J.* Catalytic properties of cytochrome P-450scc purified from the human placenta: comparison to bovine cytochrome P-450scc // Biochim. Biophys. Acta. 1993. Vol. 1163, N_2 2. P. 185–194 [Tuckey R. C., Cameron K. J. Catalytic properties of cytochrome P-450scc purified from the human placenta: comparison to bovine cytochrome P-450scc. *Biochim. Biophys. Acta.* 1993. Vol. 1163, No. 2. P. 185–194 (in Engl.)].

41. Zbytek B., Janjetovic Z., Tuckey R. C., Zmijewski M. A., Sweatman T. W., Jones E., Nguyen M. N., Slominski A. T. 20-Hydroxyvitamin D3, a product of vitamin D3 hydroxylation by cytochrome P450scc, stimulates keratinocyte differentiation // J. Invest. Dermatol. 2008. Vol. 128, № 9. P. 2271–2280 [Zbytek B., Janjetovic Z., Tuckey R. C., Zmijewski M. A., Sweatman T. W., Jones E., Nguyen M. N., Slominski A. T. 20-Hydroxyvitamin D3, a product of vitamin D3 hydroxylation by cytochrome P450scc, stimulates keratinocyte differentiation. J. Invest. Dermatol. 2008. Vol. 128, No. 9. P. 2271–2280 [Zbytek B., Janjetovic Z., Tuckey R. C., Zmijewski M. A., Sweatman T. W., Jones E., Nguyen M. N., Slominski A. T. 20-Hydroxyvitamin D3, a product of vitamin D3 hydroxylation by cytochrome P450scc, stimulates keratinocyte differentiation. J. Invest. Dermatol. 2008. Vol. 128, No. 9. P. 2271–2280 (in Engl.)].

42. Slominski A. T., Kim T. K., Janjetovic Z., Tuckey R. C., Bieniek R., Yue J., Li W., Chen J., Nguyen M. N., Tang E. K., Miller D., Chen T. C., Holick M. 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells // Am. J. Physiol. Cell Physiol. 2011. Vol. 300. P. 526–541 [Slominski A. T., Kim T. K., Janjetovic Z., Tuckey R. C., Bieniek R., Yue J., Li W., Chen J., Nguyen M. N., Tang E. K., Miller D., Chen T. C., Holick M. 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. Am. J. Physiol. 2011. Vol. 300. P. 526–541 [Slominski A. T., Kim T. K., 20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells. Am. J. Physiol. 2011. Vol. 300. P. 526–541 [In Engl.]].

43. Slominski A., Janjetovic Z., Tuckey R. C., Nguyen M. N., Bhattacharya K. G., Wang J., Li W., Jiao Y., Gu W., Brown M., Postlethwaite A. E. 20S-Hydroxyvitamin D3, noncalcemic product of CYP11A1 action on vitamin D3, exhibits potent antifibrogenic activity in vivo // J. Clin. Endocrinol. Metab. 2013. Vol. 98. P. 298–303 [Slominski A., Janjetovic Z., Tuckey R. C., Nguyen M. N., Bhattacharya K. G., Wang J., Li W., Jiao Y., Gu W., Brown M., Postlethwaite A. E. 20S-Hydroxyvitamin D3, noncalcemic product of CYP11A1 action on vitamin D3, exhibits potent antifibrogenic activity in vivo. J. Clin. Endocrinol. Metab. 2013. Vol. 98. P. 298–303 [In Engl.]].

Статья поступила в редколлегию 22.06.2016. Received by editorial board 22.06.2016.

106 0 БГУ - 95 лет! У