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Physical and mathematical models as well as numerical algorithms for simulation of advanced technological
processes, such as thermal annealing after low-energy ion implantation used during the VLSI fabrication are
presented. In this paper we propose a model that treats the migration of the impurity atoms at the thermal
annealing. We take into account process nonlinearity and in�uence of non-uniform defects distribution as well as
electric �eld and elastic stress on the migration of atoms. The redistribution of point defects as well as the di�usion
of nonequilibrium impurity interstitials in silicon are described by time-dependent quasi-linear parabolic equations.
The results of numerical calculations are presented as well.
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1. Introduction

One of the ways of obtaining shallow p�n-junctions in
the silicon-based ultra large integrated circuits (IC) is
the extension of traditional technologies, namely ion im-
plantation with the subsequent thermal processing. The
fabrication of new generations of ICs is associated with
the application of low-energy ion implantation and ther-
mal annealing [1�3]. Such processes allow formation of
p�n-junctions at the depth shallower than 30 nm. It is
signi�cant to observe the e�ect of �uphill� di�usion of the
impurity near the crystal surface [1, 2]. Due to high cost
of IC development and fabrication, a numerical simula-
tion that reduces the number of experimental iterations
becomes extremely valuable. The necessity of obtaining
adequate calculated pro�les of impurity distribution im-
plies the use of high-level kinetic di�usion models. In the
present work we propose a model that treats the migra-
tion of the impurity atoms in terms of �impurity atom�
vacancy� and �impurity atom�interstitial atom of silicon�
di�using complexes. It also accounts for the in�uence of
such factors as electric �eld, internal elastic stress and
non-stationary change of defects.

2. Di�usion model

In accordance with modern ideas, the di�usion of sub-
stitutional impurities in silicon is carried out with the
participation of point defects, namely vacancies (V) and
intrinsic interstitial silicon atoms (I) which form moving
impurity�vacancy and impurity�interstitial pairs with
the impurity atoms (pair-di�usion mechanism) [4�7].

∗corresponding author; e-mail: komaraf@bsu.by

Let us consider a problem of modeling the di�usion of
donors or acceptors in a semiconductor. The di�usion
can be described by the �ux of an impurity

J = −DE

(
grad(CVC) +

CVC

χ
gradχ

)
−DF

(
grad(CIC) +

CIC

χ
gradχ

)
+ vECVC + vICIC. (1)

Here χ is the total concentration of charged particles
(electrons for donors or holes for acceptors) normalized
by the intrinsic concentration of electrons ne:

χ =
C −N +

√
(C −N)2 + 4n2e
2ne

. (2)

In (1) and (2) the following notations were used: C is
the concentration of impurity in the position of substitu-
tion, N is the concentration of the impurity of the oppo-
site type (which we assume to be constant), CV and CI

are the concentrations of vacancies and intrinsic intersti-
tials, respectively, in neutral charge state normalized by
their concentration in thermal equilibrium; DE and DF

are the e�ective di�usivities of impurity atoms by means
of formation, migration, and dissociation of the �impu-
rity atom�vacancy� pairs (E-centers) and formation, mi-
gration, and dissociation of the �impurity atom�silicon
self-interstitial� pairs, respectively; vE and vF are the
vectors of the e�ective drift velocity of dopant atoms
in the �eld of elastic stresses due to migration of �im-
purity atom�vacancy� and �impurity atom�silicon self-
-interstitial� pairs, respectively. Thus, here and below
the superscripts �E� and �F� refer to the di�usion mech-
anisms due to the interaction with vacancies and self-
-interstitials, respectively.

It is well known from the experimental and theoreti-
cal investigations that vacancies in silicon crystals exist
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in at least �ve charge states, namely, doubly negatively
charged vacancies V2−, singly negatively charged vacan-
cies V−, neutral vacancies V×, singly positively charged
vacancies V+, and doubly positively charged vacancies
V2+ [8, 9]. Similar charge states I2−, I−, I×, I+, and I2+

are also suggested for silicon self-interstitials [9]. In the
simulations presented below, the temperature range of
850�1000 ◦C is considered. For these thermal treatments
the values of ne are within the range of 3.46 × 1018�
8.85× 1018 cm−3. On the other hand, the characteristic
concentration of cluster formation for doping with ar-
senic is 1.71 × 1020 cm−3 and 2.54 × 1020 cm−3 for the
temperatures 850 ◦C and 950 ◦C, respectively [10]. The
solubility limit Csol for doping with boron is equal to
1.19 × 1020 cm−3 for the temperature 1000 ◦C [10]. It
means that for the case of low-energy high-dose ion im-
plantation the value of χ is signi�cantly greater than 1,
especially at the initial stage of annealing, and singly and
doubly charged vacancies or self-interstitials can substan-
tially in�uence dopant di�usion. Therefore, we describe
the e�ective di�usivities by the following combined equa-
tion:

DE,F = DE,F
i

1 + βE,F
1 χ+ βE,F

2 χ2

1 + βE,F
1 + βE,F

2

,

where empirical coe�cients βE,F
1 and βE,F

2 are responsible
for the relative contribution of singly and doubly charged
vacancies (or interstitials) to the process of impurity mi-
gration. Here DE

i and DF
i are the intrinsic di�usivities

due to migration of �impurity atom�vacancy� and �impu-
rity atom�silicon self-interstitial� pairs, respectively.

It is well known that local doping of silicon with a sub-
stitutionally dissolved impurity having another atomic
radius compared to the host atom results in signi�cant
elastic stresses. Because the impurity distribution is
changed during annealing, distribution of stresses is also
a space-time function. It is assumed in Ref. [11] that the
potential energy of a point defect in the �eld of elastic
stresses Ud is proportional to the impurity concentra-
tion C. Then, it follows from [12, 13] that the e�ective
drift velocity of point defects (including the pairs) is pro-
portional to the gradient of the impurity concentration C.
However, the stress calculation in the ion-implanted lay-
ers is still a very complicated problem, which requires
further investigations. Indeed, the processes of point de-
fect di�usion and cluster formation can in�uence the dis-
tribution of elastic stresses. Therefore, to obtain drift ve-
locities of mobile species in the �eld of elastic stresses, the
appropriate assumptions can be used. For example, the
impurity concentration C is approximated by the Gaus-
sian function when calculating drift velocities [13].

To calculate the distributions of nonequilibrium vacan-
cies and self-interstitials, the di�usion equations such as
equations for point defects described in [14] are used. For
solution of these equations, the process of defect trapping
in silicon crystals is characterized by the average lifetimes
of vacancies and self-interstitials. In addition, it is sup-
posed, according to the experimental data [15], that the

surface is an e�ective sink of silicon self-interstitials. It is
also supposed that silicon self-interstitials generated dur-
ing ion implantation are accumulated in the end-of-range
(EOR)-defects. During thermal processing dissolution of
the EOR-defects occurs that results in the increase of the
concentration of self-interstitials and transient enhanced
di�usion (TED) of implanted impurity. In addition, gen-
eration of silicon interstitials responsible for TED can
occur due to dissolution or rearrangement of the clusters
of dopant atoms [4].

According to the conservation law

divJ +
∂C

∂t
= 0

and from (1) and (2) we obtain the following nonlinear
di�usion equation:

∂C

∂t
=

p∑
i=1

∂

∂xi

(
DE(C)

∂(CVC)

∂xi
+DF(C)

∂(CIC)

∂xi

+DN(C,CV, CI)
∂C

∂xi
− vEi CVC − vFi CIC

)
,

p = 1, 2, 3, 0 < t ≤ T, (3)

where

DN =
C(DECV +DFCI)√

(C −N)2 + 4n2e
.

Let us now consider Eq. (3) within the simulation do-
main G that spans from the surface to the depth of the
wafer. In the bulk of the wafer on the boundary of the
domain G we assume the dopant �ux to be equal to zero

DE(C)
∂(CVC)

∂n
+DF(C)

∂(CIC)

∂n

+DN(C,CV, CI)
∂C

∂n
− vEnCVC − vFnCIC = 0,

where n is the normal to the simulation boundary.

The initial conditions are of the form

C(x, t)|t=0 = C0(x),

where C0(x) is the distribution of dopant atoms after ion
implantation [16].

The evolution of point defects is described by the fol-
lowing parabolic equation:

∂CV,I

∂t
=

p∑
i=1

∂

∂xi

(
dV,I(C)

∂CV,I

∂xi
+ ψV,I

1,i (x)C
V,I

)
− ψV,I

2 (x)CV,I + ψV,I
3 (x). (4)

Here dV,I(C) is the di�usivity of point defects, ψV,I
1,i (x) is

the function depending on e�ective drift velocity in the

internal elastic stress �eld, and ψV,I
3 (x) is the function

dependent on the defect generation rate. The average
di�usion length and the lifetime of the defects are cap-

tured in the term ψV,I
2 (x)CV,I.

Initial and boundary conditions for Eq. (4) are speci-
�ed as it was mentioned in [7]. In particular, boundary
conditions for Eq. (4) are described as [7]:
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α1

(
dV,I(C)

∂CV,I

∂n
+ ψ1C

V,I

)
+ α2C

V,I = α3, (5)

where α1 denotes 0 or 1; α2 and α3 are some constants.

An approximate solution of the nonlinear system (3),
(4) is based on the splitting of di�erential operator of
right-hand side of each of two equations. For the solu-
tion of three-dimensional problem (p = 3) a locally-one-
-dimensional method in discrete steps is used [9]. Let us
introduce a uniform time grid

ωτ =
{
tj , tj = τj, j = 0, j0, τj0 = T

}
.

We assume that Eq. (3) corresponds to a chain of one-
-dimensional equations

∂C(k)

∂t
=

∂

∂xk

(
DE(C(k))

∂(CV
(k)C(k))

∂xk

+DF(C(k))
∂(CI

(k)C(k))

∂xk

+DN(C(k), C
V
(k), C

I
(k))

∂C(k)

∂xk

− vEkCV
(k)Ck − v

F
kC

I
(k)Ck

)
,

k = 1, 2, 3, tj−1 ≤ t ≤ tj , x = (x1, x2, x3) ∈ G. (6)
The solutions of (6) for k = 1, 2, 3 are joined with the
following relations:

C(1)

∣∣
t=tj

= C(3)

∣∣
t=tj

, j = 1, j0 − 1;

C(2)

∣∣
t=tj−1

= C(1)

∣∣
t=tj

,

C(3)

∣∣
t=tj−1

= C(2)

∣∣
t=tj

, j = 1, j0;

C(1)

∣∣
t=0

= C0(x). (7)

Similarly, the following system of one-dimensional equa-
tions corresponds to Eq. (4) for point defects

∂CV,I
k

∂t
=

∂

∂xk

(
dV,I(Ck)

∂CV,I
(k)

∂xk
+ ψV,I

1,k (x)C
V,I
(k)

)

− ψV,I
2(k)(x)C

V,I
(k) + ψV,I

3(k)(x),

k = 1, 2, 3, tj−1 ≤ t ≤ tj , x = (x1, x2, x3) ∈ G. (8)
Here

3∑
k=1

ψV,I
2(k)(x) = ψV,I

2 (x),

3∑
k=1

ψV,I
3(k)(x) = ψ3(x).

The values of CV,I
(k) for k = 1, 2, 3 are joined on the

time layers tj , j = 0, j0 in the same way as in (7).
Equations (6) and (8) are solved sequentially for each
t = tj , j = 1, j0. According to the theory of locally-one-
-dimensional method [9], for an approximate solution of
(3) and (4) for each t = tj , j = 1, j0 we take the functions

C(3) ≈ C and CV,I
(3) ≈ C

V,I.

In order to form homogeneous conservative di�erence
schemes for Eqs. (6) and (8), we use integro-interpolation
method as described in [17].
It was shown in [18] that the long-range migration of

nonequilibrium impurity interstitials is the main factor
in the formation of �tails� in the region of low impurity
concentration for random ion implantation into silicon
crystals and implantation into preamorphized silicon lay-
ers. Accordingly, the model was improved by entering
additional �ux of the interstitial impurity migration as
shown in [18]. An equation characterizing the inactive
interstitial boron or phosphorus atoms di�usion is similar
to (4). We introduced temperature-dependent activation
time [19] after which the impurity atoms are considered
as electrically active, and their further di�usion is calcu-
lated using Eq. (3).

3. Calculation results

A software package designed on the basis of the de-
scribed models was integrated into the Silvaco ATHENA
Process Simulation Framework. It enables the use of
our models and calculation methods in designing �ow
solutions alternative to implemented in the well-known
TCAD software products, mainly in solving the problems
with the shallow depth of formed doped regions. The de-
veloped software was used to simulate various processes,
including low energy ion implantation of B, BF2, P, As,
Sb, C in the silicon structure, corresponding to typical
heavily doped small active areas of VLSI components,
and subsequent thermal annealing. The simulation re-
sults agree well with the experimental data obtained
by means of secondary ion mass spectroscopy (SIMS)
and spreading resistance pro�ling, including possibility
to predict experimentally observable extended �tail� for-
mation in the region of low impurity concentration, �kink
and tail� pro�le shapes, the �uphill� di�usion and local
maxima formation at a crystal surface. The models are
computationally e�ective and applicable to simulation of
one- and two-dimensional impurity concentration pro�les
in multilayered semiconductor structures.
We simulated various experiments described in the lit-

erature and compared the calculated data with the em-
pirical results. In this section we will describe two such
experiments. In Figs. 1 and 2, the simulation results for
very low energy ion implantation at 2 and 5 keV, respec-
tively, for boron [20] and arsenic [2], followed by thermal
annealing are compared to the experimental data.
In Fig. 1, the SIMS data from Ref. [20] and our sim-

ulation results are presented for 1 × 1014 cm−2 boron
implanted in silicon with an energy of 2 keV and then an-
nealed for 10 s at a temperature of 1000 ◦C. It is assumed
that the contribution of vacancies may be neglected be-
cause the self-interstitial supersaturation is over 104 [21],
and hence the contribution of self-interstitials is much
larger than that of vacancies.
The boron di�usion occurs through the formation, mi-

gration and dissociation of mobile self-interstitial dopant
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Fig. 1. Results of our simulation (4) compared to
the experimental SIMS pro�le (3) from Ref. [12] for
1× 1014 cm−2 boron implanted in silicon with an en-
ergy of 2 keV and annealed for 10 s at a temperature
of 1000 ◦C. (1) and (2) are the implanted boron pro�les
(SIMS and simulated, respectively).

Fig. 2. Simulation results compared to the experimen-
tal ToF-SIMS pro�les from [2] for 5 keV arsenic im-
planted at a dose of 1 × 1015 cm−2 in silicon and then
annealed (RTA). (1), (2) and (3) are the experimental
pro�les of as-implanted and annealed at 850 and 950 ◦C
arsenic; (4) and (5) are our simulation results for 850
and 950 ◦C RTA, respectively.

pairs. The e�ect of electrical �eld is also taken into ac-
count. The essential simulation parameters for di�usivity
evolution are βF

1 = 0.7; βF
2 = 0. In the boundary condi-

tions for defects (self-interstitials) at the silicon surface
in Eq. (5), the parameters α1 = 1, α2 = 1014, and α3 = 0
are used.
In Fig. 2, the experimental results of Ref. [2] are com-

pared with the simulation data. To model di�usion of
As atoms, a few simpli�cations were done. It is assumed
that these atoms coupled with self-interstitials di�use
mainly on interstitials. Thus, the e�ective di�usivity
observed represents the di�usivity of these mobile pairs
multiplied by the fraction of dopants which are paired.

Self-interstitial drift in the �eld of electric stresses was ne-
glected. The essential simulation parameters in this case
are βF

1 = 3.67; βF
2 = 1.34. In the boundary conditions

for point defects at the silicon surface, the parameters
α1 = 1, α2 = 1014, and α3 = 10−9 are used.
In Ref. [2], arsenic ion implantation at the energies of

5, 10 and 15 keV at a high dose of 1 × 1015 cm−2 was
carried out into Si wafers at room temperature at a tilt
angle of 7 degree. After ion implantation, the wafers
were subjected to rapid thermal annealing (RTA) in a
tungsten-halogen lamp system, in nitrogen ambient. The
RTA conditions were: temperature 650�950 ◦C and time
10�30 s. Time-of-�ight SIMS arsenic concentration depth
pro�ling has been performed. Our results were found to
be in a good agreement with the ToF-SIMS pro�les of
annealed samples. In Fig. 2, we show the results for
5 keV implantation followed by RTA at 850 ad 950 ◦C.
Therefore, the results of the simulations �t the exper-

imental data very well, which implies that the proposed
model can be used to predict the results of experiments.

4. Conclusion

A model of high concentration transient enhanced dif-
fusion of impurity atoms implanted into Si has been de-
veloped. The model takes into account process nonlin-
earity and in�uence of non-uniform defects distribution
as well as electric �eld and elastic stress on the migra-
tion of atoms. The redistribution of point defects as well
as the di�usion of nonequilibrium impurity interstitials
in silicon are described by time-dependent quasi-linear
parabolic equations. These features make it possible to
use the model for simulating the low-energy-implanted
dopant di�usion during thermal annealing. A software
package designed on the basis of the described model
enables the use of new models and calculation methods
in designing �ow solutions alternative to implemented in
the well-known TCAD software products, mainly in solv-
ing the problems with the shallow depth of formed doped
regions.
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