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As demonstrated for various types of nonhomogenuities φ the Mathematica imple-
mentation of MIDO can be applied to a wide class of (linear) PDEs for which in most
cases the built-in Mathematica procedure DSolve cannot provide a solution; thus
DESolve really is an extension for solving PDEs with Mathematica. However, there
are some restrictions inherent to this method :

(i) the (pseudo) differential operator polynomial χ is subject to decomposition into
linear factors such that (α Dt + βDx + . . . + γ)κ where κ denotes the multiplicity.

(ii) the nonhomogenuity φ is restricted to a limited class of functions with linear
arguments such as e. g. (ax + by + . . .) allowed only but not, for example, arguments
which contain higher powers of the variables (ax2 + by3 + . . .). The functions admitted
for φ are exponential, trigonometric (sin or cos) and hyperbolic functions (sinh or
cosh) and products resp. sums of these functions. Other trigonometric or hyperbolic
functions such as {tan, cot} resp. {tanh, coth} are excluded simply because for them
the replacement rules which are essential for MIDO do not hold. Only the subgroup of
functions {sin, cos} resp. {sinh, cosh} is closed under differentiation.

(iii) if the nonhomogenuity φ is a monomial M(x, y, z, . . .) =
kP

i=1
α1x

kiymizni · . . .
(which may even contain an additional rational term i. e. y−mi or a logarithmic factor
e. g. log y ) then any combination of power products with respect to the reference
variables in VList is allowed.

Although due to limitation of space not demonstrated here MIDO covers homoge-
neous and inhomogeneous ODEs too; adaptation of the procedures to ODEs required
only some minor modifications with respect to pattern recognition.

Introduction. The paper deals with theMethod of Inverse Differential
Operators (MIDO) which is already well established for ordinary differential
equations (ODE) but has never been thoroughly applied to nonhomogeneous
partial differential equations (PDE). P.K. Kythe, P. Puri and M.R. Schaefer-
kotter [1] have extended MIDO stepwise to PDEs but the full implementation
into the CAS Mathematica is new.

General restriction for the differential equations (DE), PDEs or ODEs,
under consideration is that Lx1,x2,... =

n1,n2,...P
i1,i2,...=0

ai,j,...D
i1
x1

Di2
x2

. . . is a linear

partial differential operator polynomial χ (Dx1
, Dx2

, . . .) with constant coe-
fficients a, b, α, β, . . . ,−2, 3, . . .. Here, Dm

x1
= ∂m

x1
, Dn

x2
= ∂n

x2
etc. represent

partial derivatives of order m,n, . . .. In order to facilitate the algebraic
manipulation of the differential operator polynomial χ an intermediate
representation in terms of pseudo differential operators Dxi

is introduced
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which are fully convertable into each other, e. g. D3
xD2

yu(x, y) ⇔ ∂x,x,x∂y,y

u(x, y). Thus, χ (Dx1
,Dx2

, . . .) u (x1, x2, . . .) constitutes the lhs of the PDE.
The rhs of the DE is either φ = 0 in case of a homogeneous equation or
φ (x1, x2, . . .) for a nonhomogeneous one. In principle, the order of the PDE
in terms of (pseudo) differential operators may be quite general.

As to homogeneous PDEs (where φ = 0 the general solution is denoted
as uh. For the method used it is essential that the differential operator
polynomial χ (Dx1

,Dx2
, . . .) can be factorized into linear factors of type

Lκ
x1,x2,...,xn

= (α1Dx1
+ α2Dx2

+ . . . + αnDxn
+ γ)κ with multiplicity κ for

a subset of n independent variables {x1, x2, . . . , xn} ∈ {t, x, y, z, ξ, η, ζ}.
Hence, each linear factor κ = 1 gives rise to the following type of solution:

(α1Dx1
+ α2Dx2

+ . . . + αnDxn
+ γ) ⇒ uh(x1, x2, . . . , xn) =

= f1

 
α1x2 − α2x1

α1
,
α1x3 − α3x1

α1
, . . . ,

α1xn − αnx1

α1

!
· e−γx1/α1.

If a linear factor, e. g. (α1Dx1
+ α2Dx2

+ γ)κ, has multiplicity κ > 1 then
the corresponding solution is :

(α1Dx1
+ α2Dx2

+ γ)κ ⇒ uh (x1, x2) =
κ−1X
k=0

xk
1fk (α1x2 − α2x1) · e−γx1/α1.

As to nonhomogeneous PDEs the functional form of the nonhomogenuity
φ (x1, x2, . . .) 6= 0 is subject to certain restrictions which are essential to
the applicability of MIDO. In this respect the nonhomogenuity φ can either
be:

(i) an exponential function φ1 = eax+by+cz+...,
(ii) a trigonometric functions φ2 = sin | cos(ax + by + cz + . . .),
(iii) a hyperbolic functions φ2 = sinh | cosh(ax + by + cz + . . .) or
(iv) anymultiplicative combination of an exponential φ1 with trigonome-

tric or hyperbolic functions φ2 such that φ = φ1·φ2 = eax+by+cz+...·sin | cos |
sinh | cosh(. . .) resp.,

(v) any additive combination φ2
kP

i=1
φ2i with terms φ2i = eax+by+cz+... ·

sin | cos | sinh | cosh(. . .) resp. ;

(vi) an arbitrary puremonomial φ3 = M(x, y, z, . . .) =
kP

i=1
αix

kiymizni ·
. . .,

(vii) a monomial with rational part φ3 =
kP

i=1
αix

kiymiz∓ni · . . .,
(iix) a monomial multiplied with logarithmic term φ3 =

kP
i=1

αix
kiymiz∓ni·

log(y) . . . or
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(ix) a monomial multiplied with exponential function φ1 · φ3 =
= eax+by+cz+... ·M(x, y, z, . . .),

(x) a monomial multiplied with trigonometric function φ2 · φ3 = =
sin | cos(ax + by + cz + . . .) ·M(x, y, z, . . .),

(xi) a monomial multiplied with hyperbolic function φ2 · φ3 = sinh |
cosh(ax + by + cz + . . .) ·M(x, y, z, . . .) or

(xii) any sumφ =
kP

i=1
φi with multiplicative combinations of φ1, φ2 and

φ3 (as given above).
The nonhomogenuity φ is restricted to classes of exponential, trigonome-

tric sin or cos and hyperbolic (sinh or cosh) functions for which only
linear combinations of an arbitrary selection of reference variables from
VList are allowed as arguments, e. g. (ax + βy − 2z + . . . but not (ax2 +
βy3 + . . .). However, for monomials φ3 any combination of power products
xkiymiz∓ni . . . of the reference variables is admitted. As regards to trigonome-
tric or hyperbolic functions any terms containing tan, cot resp. tanh, coth
are excluded simply because only the subgroups sin, cos or sinh, cosh are
closed under differentiation. This behavior is reflected in certain substitution
rules within MIDO.

The Method. For short, in order to calculate the particular solution
of a DE the essential idea of MIDO is to move the inverse of the differential
polynomial χ from the lhs to the rhs of the DE and apply it on the
nonhomogenuity φ:

χ (Dx1
,Dx2

, . . .) u (x1, x2, . . .) = φ (x1, x2, . . .) =⇒ u (x1, x2, . . .) =

= χ (Dx1
,Dx2

, . . .)−1 φ (x1, x2, . . .) .

For subsequent computation several replacement rules play an important
role :

(111) Inversion of differential operator polynomial χ · χ−1φ = 1φ:

χ (Dx, Dy)

24 1

χ (Dx, Dy)
φ(x, y)

35 = φ(x, y).

(222) Factorization of χ = χ1 · χ2 · . . .:
1

χ1 (Dx, Dy) · χ2 (Dx, Dy)
φ(x, y) =

1

χ1(Dx, Dy)

�
1

χ2(Dx, Dy)
φ(x, y)

�
=

=
1

χ2(Dx, Dy)

�
1

χ1(Dx, Dy)
φ(x, y)

�
.
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(333) Exponential nonhomogenuity φ1 = eax+by+cz+...:

1

χ (Dx, Dy)
eax+by =

1

χ(a, b)
eax+by

with χ(a, b) 6= 0 and φ1 ≡ eax+by.
(444) Trigonometric nonhomogenuity φ = φ2 = sin | cos(. . .):

X
�
D2

x, D
2
y

�
cos(ax + by) = X

�
−a2,−b2

�
cos(ax + by),

X
�
D2

x, D
2
y

�
sin(ax + by) = X

�
−a2,−b2

�
sin(ax + by).

(555) Hyperbolic nonhomogenuity φ = φ2 = sinh | cosh(. . .):

X
�
D2

x, D
2
y

�
cosh(ax + by) = X

�
a2, b2

�
cosh(ax + by),

X
�
D2

x, D
2
y

�
sinh(ax + by) = X

�
a2, b2

�
sinh(ax + by).

(666) Multiplicative nonhomogenuity φ = φ1 · φ2 = e(...) · sin | cos |
sinh | cosh(. . .):

1

χ (Dx, Dy)
eax+byφ2(x, y) = eax+by 1

χ (Dx + a,Dy + b)
φ2(x, y) =

= eax 1

χ (Dx + a,Dy)
ebyφ2(x, y) = eby 1

χ (Dx, Dy + b)
eaxφ2(x, y);

X (Dx, Dy) eax+byφ2(x, y) = eax+byX (Dx + a,Dy + b) φ2(x, y),

where X =
�
χ−1� is the inverse of the differential polynomial which is such

that the denominator denom (X) is free of Dx, Dy, . . ..

(777) Monomial nonhomogenuity φ3 = M(x, y, z, . . .) =
kP

i=1
xkiymizni . . ..

Moreover, it turns out that monomials with rational terms xky−mzn and/or
with a logarithmic factor xky±mzn log(z) are covered by the algorithm as
well.

1

χ (Dx, Dy, Dz . . .)
M(x, y, z, . . .) =

1

a0Dn
x (1−R (Dy, Dz, . . .))

×

×M(x, y, z, . . .) =
1

a0
D−n

x

NmaxX
j=0

R (Dy, Dz, . . .)
j M(x, y, z, . . .),

where χ−1 is expanded into a geometric series with respect to the residual
expression R (Dy, Dz, . . .) and is applied to a monomial M of finite order
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so that the series of differential operators Dy, Dz, . . . is truncated at some
order Nmax.

(888) Additive nonhomogenuity φ =
kP

i=1
φi, where terms φi = M(. . .)

���e(...)
���

sin | cos | sinh | cosh(. . .).

1

χ (Dx, Dy)
(ρ1φ1(x, y) + ρ2φ2(x, y)) =

= ρ1
1

χ (Dx, Dy)
φ1(x, y) + ρ2

1

χ (Dx, Dy)
φ2(x, y).

A simple example. For better understanding of the mechanism how
the replacement rules previously given are applied consider the following
simple example of a 2nd order PDE with variables {x, y}:�

3D2
x − 2DxDy − 5D2

y

�
u(x, y) = ex−y + (3x + y).

From inspection of the lhs of the PDE the differential operator polynomial
χ turns out to be χ =

�
3Dx

2 − 2DxDy − 5Dy
2� = (3Dx − 5Dy) · (Dx +Dy),

whereas the nonhomogenuity φ is the sum of an exponential function
φ1 = ex−y and a (simple) monomial φ3 = (3x + y).

As can be seen from the decomposition of the differential polynomial χ
into the linear factors (3Dx − 5Dy) (Dx +Dy) it is straightforward that the
solution of the homogeneous PDE is uh = f1,0

�
1
3(5x + 3y)

�
+ f2,0(y − x).

According to the second term f2,0(y − x) it is obvious that the function
ex−y is only a special instance of f2,0 and will satisfy the homogeneous
PDE.

In order to calculate the particular solution up1 for the monomial
nonhomogenuity φ3 = (3x+y) a series expansion of χ−1 into a (truncated)
geometric series is done.

up1(x, y) = χ−1[3x + y] =
1

3D2
x − 2DxDy − 5D2

y

[3x + y] =

=
1

3
D−2

x

1

1−
�

2
3
Dy

Dx
+ 5

3

�Dy

Dx

�2� [3x + y] =

=
1

3
Dx

−2

�
1 +

�
2

3

Dy

Dx
+

5

3

 Dy

Dx

!2�
∓ . . .

�
[3x + y] =

=
1

3
D−2

x

"
(3x + y) +

2

3
D−1

x 1

#
= D−2

x [x] +
y

3
D−2

x [1] +
2

9
D−3

x [1] =

5



=
x3

6
+

y

3

x2

2
+

2

9

x3

6
=

 
1

6
x2y +

11

54
x3
!

.

It should be noted that the inverse differential operator D−1
x is the

antiderivative; thus D−n
x is a n-th order nested (indefinite) integral with

respect to x.
As a consequence of the discussion of the homogeneous solution it

turns out that as regards to φ1 = ex−y (after application of replacement
rule (6) to χ−1) the expression χ−1 (Dx,Dy) ex−y = ex−y · χ−1 (Dx → +1,
Dy → −1) [1] is singular. Therefore the naive ansatz for up2 does not
suffice the nonhomogeneous PDE: due to the fact that the perturbing
function φ1 = ex−y is already included in the homogeneous solution uh

it is essential to multiply the ansatz with an extra term xκ where κ is
the multiplicity of the root of the linear factor (Dx +Dy) (here κ = 1).
Thus, the general ansatz up2 =

�
a0 + a1x + a2x

2� ex−y has to be made with
unknown coefficients {a0, a1, a2} and substituted into the PDE. Then it
turns out that up2(x, y) is a particular solution of the PDE for all x only
if the coefficients are chosen to be a1 = 1

8 , a2 = 0 with arbitrary value
for a0 (because any ex−y already satisfies the homogeneous PDE, therefore
a0 = 0 may be chosen). Due to replacement rule (2) the particular solution
of the PDE is given as up = up1 + up2 =

�
1
6x

2y + 11
54x

3
�
+ 1

8x · ex−y.
Implementation of MIDO. The central procedure for the solution of

the DE is DESolve[χ, φ, onoff, opt]. It works as a kind of "black box":
the only imput required is the differential operator polynomial χ (Dx1

,Dx2
,

. . .) given in terms of pseudo differential operatorsDxi
and the nonhomoge-

nuity φ (x1, x2, . . .). There is no loss of generality if the selection of differen-
tial operators is restricted to the list DList= {Dt,Dx,Dy,Dz,Dξ,Dη,Dζ}
corresponding to the independent variables from list VList= {t, x, y, z, ξ,
η, ζ}. Both sets, DList and VList, may be changed if necessary.

The type of DE (ODE or PDE) is determined as regards to the number
of variables {x1, x2, . . .} being used. The variables are counted from analy-
zing the number of distinct differential operatorsDxi

used in χ with reference
to VList. Thus, if there is only a single variable x1 involved an ODE
is given whereas if several variables (x1, x2, . . .) occur a PDE has to be
treated. It should be pointed out that the coefficients occuring in χ and φ
can either be numbers, e. g.

n
1,−3,

√
2, . . .

o
or symbols, e. g. {a, b, . . . , α,

β, . . .}, or a mixture of both types which is a non-trivial problem to
distinguish them from the variables in VList.

The algorithm of MIDO takes the following steps :
(111) Whether the nonhomogenuity φ is zero or nonzero decided which
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of the procedures homogeneousDEsolutions (for φ = 0) or nonhomogene
ousDEsolutions (for φ 6= 0) is called and thus either the homogeneous
solution uh or the particular solution up will be calculated. If φ = 0 either
the procedure homogeneousODEsolutions or homogeneousPDEsolutions
is called depending on the number of variables and the homogeneous solution
uh is evaluated. For φ 6= 0 the most general form of the nonhomogenuity
is φ = φ3 + φ3 · φ1|2, where φ3 denotes a monomial (resp. polynomial for
a single variable), φ1|2 is a non-monomial which is either an exponential
φ1 = exp(. . .), a trigonometric φ2 = sin | cos(. . .) or hyperbolic φ2 =
sinh | cosh(. . .) function. Moreover, φ1|2 may be multiplied with an additional
monomial prefactor φ3. The routine monomialTest[φ, onoff] which inves-
tigates φ returns the separated components of φ ( monomial, non-monomial,
monomial prefactor) for further treatment. Three different flags (typeφ1,
typeφ2, typeφ3) are set with values T or F according to which the
algorithm makes a distinction of cases between five different combinations.

In the case (F, T, F ) where only a non-monomial nonhomogenuity φ1|2
is present its type is further analyzed by means of the routine analyzeφ[φ,
onoff] which returns a parameter typeφ. According to its value there will
be a switch between different cases: Exp (for exponential functions), Trig
(for trigonometric functions φ2 = sin | cos), Hyp (for hyperbolic functions
φ2 = sinh | cosh), Times (for products φ1 · φ2) and Plus (for φ1 + φ2).

In the case (T, F, F ) the nonhomogenuity is a monomial φ3 =

= M(x, y, z, . . .) =
kP

i=1
xkiymizni . . .. The algorithm covers, in addition, as

well monomials with rational terms xky−mzn and/or with a logarithmic
factor xky±mzn log(z). Due to five different combinations for the flags
(typeφ1, typeφ2, typeφ3) to be considered the computation of up branches
into one of the procedures listed below :

(aaa) (T, F, F ) for pure monomial
φ3 ⇒ uPMonomial⊗Rationalφ1 [χ, φ3, onoff ];
(bbb) (F, T, F ) for non-monomial
φ1|2 ⇒ uPExpφ3 [χ, φ1, onoff ] or uPTrigφ2 [χ, φ2, onoff ] or
uPHypφ2 [χ, φ2, onoff] or
combinations uPExpφ1⊗ TrigHypφ2 [χ, φ1 · φ2, onoff ] resp.
uPnonMonomialφ21⊕ φ22 [χ, φ1 + φ21 + φ22, . . . , onoff ];
( ccc) (F, T, T ) for monomial · non-monomial
φ3 · φ2 ⇒ uPMonom⊗ nonMonomial[χ, φ3 · φ2, onoff ];
(T, T, F ) for monomial + non-monomial
φ3 + φ2 ⇒ uPMonom⊕ nonMonomial[χ, φ3 + φ2, onoff ];
(T, T, T ) for monomial + monomial · non-monomial
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φ3 + φ3 · φ2 ⇒ uPMonom⊗nonMonomial[χ, φ3 + φ3 · φ2, onoff ].
(2)(2)(2) The coefficients of the nonhomogenuity φ are extracted by means

of auxiliary routines:
coeffExpφ[φ], coeffTrigφ[φ], coeffHypφ[φ],
coeffExpTrigOrHypφ[φ], coeffnonMonomialφ[φ],
coeffMonomialφ[φ], coeffMonomialLogφ[φ],
coeffMonom⊕nonMonomφ[φ] or coeffMonom⊗nonMonomφ[φ] and passed

through to one of the special routines:
uPExpφ1|uPTrigφ2|uPHypφ2[χ, coeffs, φ, ρ, onoff],
uPExpφ1⊗TrigHypφ2[χ, coeffs, φ, ρ, onoff],
uPnonMonomialφ21⊕ φ22[χ, φ, onoff],
uPMonom⊗Rationalφ1[χ, φ, onoff], uPMonomialφ1[χ, φ, onoff],
uPMonom⊕nonMonomφ[χ, φ, onoff],
uPMonom⊗nonMonomφ[χ, φ, onoff] which finally determine the soluti-

on up.
(3)(3)(3) The replacement rules which are important to deal with functions

constituting φ are generated by the subsequent procedures:
subD2Coeffs: {Di → ci}

rule 3: 1
χ(Dx,Dy) eax+by = 1

χ(a,b) eax+by,

subDD2CoeffTrig:
8><>:Di

n :→
�
−ci

2
�n/2| {z }

n even

|
�
−ci

2
�bn/2c| {z }

n odd

Di

9>=>; ;

rule 4: X
�
D2

x, D
2
y

� 8<:cos

sin
(ax + by) = X

�−a2,−b2� 8<:cos

sin
(ax + by),

subDD2CoeffHyp:
8><>:Di

n :→
�
+c2

i

�n/2| {z }
neven

|
�
+ci

2
�bn/2c| {z }

nodd

Di

9>=>;
rule 5: X

�
D2

x, D
2
y

� 8<:cosh

sinh
(ax + by) = X

�
a2, b2� 8<:cosh

sinh
(ax + by),

subD2DplusCoeffφ1: {Di → (Di + ci)}
rule 6: X (Dx, Dy) φ2(x, y)eax+by = eax+byX (Dx + a,Dy + b) φ2(x, y).
(4)(4)(4) Another crucial routine is rationalizeX[X, subDD, onoff]

which ’rationalizes’ the denominator of the inverse differential operator
polynomial χ−1 (Dx1

,Dx2
, . . .). In analogy to complex conjugation z whereby

the denominator of a complex number 1
z = 1

a+ib = a−ib
a2+b2 becomes real, an

expression which contains terms linear in (pseudo) differential operators
Di, for example 1

a+Di
= a−Di

a2−Di
2

subDD⇒ a−Di

a2±c2
i
, is simplified by application of

replacement rules 4 and 5. However, if products such as Di · Dj appear in
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the denominator then the rationalizing process has to be repeated until all
(pseudo) differential operators Di,Dj, . . . become squared and thus can be
replaced by

�±c2
i

�
,
�±cj

2� , . . ..
(5)(5)(5) In order to verify the correctness of the solutions, whether uh

and/or up will satisfy the original PDE χ (Dx1
,Dx2

, . . .) u (x1, x2, . . .) =
= φ (x1, x2, . . .), there is another essential central procedure given:
testDE[χ, φ, u, PDEtype, onoff, optSimplify] which deduces from the
number of variables resp. differential operators the type of DE to be either
an ODE or PDE. For φ = 0 which implies a homogeneous DE, the suitable
test procedure to be applicable is testHomDE[χ, uh, PDEtype, onoff,
optSimplify]. (For parameter PDEtype the default value is "Off", for
optSimplify it is Identity. The pseudo differential operators Dxi

(which
are used only to faciliate algebraic manipulations of the differential operator
polynomial χ) are converted into standard differential operators ∂n

xi
. The

execution is done with the procedure Convertχ2PDE[χ, φ, onoff]. Auxi-
liary routines used for the conversion of the pseudo differential operators
Dn

x into (proper) differential operators ∂{x,n}# are
ruleD2D, D2DMultiRule1, concatDRule1|2|3; ruleJ 2Int,
foldJ 2Int, foldJ 2IntΣ; uvPairs, uvwTriples, uvwqQuadruples,
varsNtuples; Duv2Dxy, Duvw2Dxyz, Duvwq2Dtxyz;
pairsDiDj1, triples DiDjDk1 and quadruplesDiDjDkDl1.
In this way the familiar representation of a DE is reconstructed from χ

as, for example, required by the built-in procedure DSolve fromMathemati-
ca.

(6)(6)(6) Moreover, in addition to the implemented solver DESolve both
procedures testDE and testHomDE investigate whether DSolve[PDEeqn,
upVar, χVar] is capable finding a solution for the given DE. There is a
time constraint of 180 CPU seconds given; if it is exceeded the computation
will be aborted. It turns out, however, that only in rare cases DSolve can
provide a solution named upDS. Thus, the current implementation of MIDO
within Mathematica provides solutions for a wide range of PDEs which are
not generally covered by the built-in DSolve.

(7)(7)(7) For PDEtype="On" the type of a 2nd order PDE (to be hyperbolic|
parabolic|elliptic) is determined from the coefficients of the differential
operator polynomial χ (in analogy to the type of a quadric surface). As

regards to the value of the discriminant ∆ =

8>>><>>>:> 0 hyperbolic,
= 0 PDE is parabolic,
< 0 elliptic,

otherwise the discriminant and hence the type of PDE is indeterminate.
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The procedure which determines the type of a 2nd order PDE is Equation
Type and is switched On|Off by the parameter PDEtype from testDE.

Interface for switching between different representations of a
DE. In order to change between different representations for PDEs within
DESolve and DSolve three useful conversion procedures are provided :

(111) Convertχ2PDEeqn[χ, Φ, onoff] casts a differential polynomial
χ with pseudo differential operators Dxi

and nonhomogenuity φ = Φ
into a PDE in standard form required as input for DSolve[PDEeqn, u,
{x1, x2, . . .}], for example:

χ = a0 + a1Dζ + a2DxD3
y + a3D2

xD2
y + a4D4

x, φ = Φ →

PDEeqn = a0u[x, y, ζ] + a1u
(0,0,1)[x, y, ζ]+

+a2u
(1,3,0)[x, y, ζ] + a3u

(2,2,0)[x, y, ζ] + a4u
(4,0,0)[x, y, ζ] = Φ[x, y, ζ].

(222) ConvertPDEeqn2χ[PDEeqn, vars, onoff] converts a PDE given
in the standard form for DSolve[PDEeqn, u, {x1, x2, . . .}] into a differential
polynomial χ with pseudo differential operatorsDxi

and φ = Φ, for example:

PDEeqn = a0u[x, y, ζ] + a1u
(0,0,1)[x, y, ζ]+

+a2u
(1,3,0)[x, y, ζ] + a3u

(2,2,0)[x, y, ζ] + a4u
(4,0,0)[x, y, ζ] = Φ[x, y, ζ] →

χ = a0 + a1Dζ + a2DxD3
y + a3D2

xD2
y + a4D4

x, φ = Φ.

(333) ConvertPDEops2PDEeqn[PDEops, onoff] converts (the lhs of) a
PDE given in pure function representation into a PDE in standard form
with (dummy) nonhomogenuity φ = Φ required as input for DSolve, for
example:

PDEops = (a0#+a1∂y#+a2∂{x,1}{y,3}#+a3∂{x,2},{z,2}#+a4∂{y,4}#)& →

PDEeqn = a0u[x, y, z] + a1u
(0,1,0)[x, y, z] + a2u

(1,3,0)[x, y, z]+

+a3u
(2,0,2)[x, y, z] + a4u

(0,4,0)[x, y, z] = Φ[x, y, z].

Thus, these three conversion procedures will facilitate the switching
between different representations of a DE.

Application of MIDO to 12 classes of nonhomogeneous PDEs.
(1)(1)(1) exponential nonhomogenuity φ = φ1 = exp (. . .).
(iii) The 4th order PDE

�
5 +D2

x

�
(1 +Dy) (2 +Dz) u(x, y, z) = 4e−5x−y+z.

χ = (5 +Dx)
2 (1 +Dy) (2 +Dz) ; φ = 4e−5x−y+z;

DESolve[χ, φ,"Off"];

10



It may be noted that in this case DESolve[χ, φ, onoff] does not
return most general particular solution for the nonhomogeneous PDE

(5 +Dx)
2 (1 +Dy) (2 +Dz) u(x, y, z) = 4e−5x−y+z,

but up = 2
3x

2ye−5x−y+z only which comprises a monomial part 1
2xy2 and

an exponential function ex+2y. However, up may rather be supplemented
by additional lower order monomial terms

usupp = e−5x−y+z
�
α1 + xα2 + x2α3 + yα4 + xyα5

�
which satisfy the PDE too. This is achieved by the procedure usupp =
= uPsupplement [up, onoff] which requires as input only the existing
particular solution up.

usupp = uPsupplement [up, Off] ;
Thus, the supplemented particular solution turns out to be:

up + usupp =
2

3
e−5x−y+zx2y + e−5x−y+z

�
α1 + xα2 + x2α3 + yα4 + xyα5

�
.

Testing the resulting solution with testDE[χ, φ, up + usupp, Off ] gives
rise to the subsequent typical output:

(ii) Another example shows how the degenerate solution occuring for:�
D2

x − 2DxDy − 5D2
y

�
u(x, y) = ex−y is handled.

χ =
�
3Dx

2 − 2DxDy − 5Dy
2� ; φ := ex−y;

uh = DESolve[χ, 0,Off];
The PDE (3Dx − 5Dy) (Dx +Dy) U(x, y) = 0 already possesses the

homogeneous solution uh = f1,0
h
1
3(5x + 3y)

i
+ f2,0(−x + y)

up = DESolve[χ, φ,Off];
Due to the factorization of χ = (3Dx − 5Dy) (Dx +Dy) the replacement

rule {Dx → 1,Dy → −1} due the second factor (which results from inter-
change of ex−y with χ−1) causes the inverse differential polynomial χ−1 to
becomes singular. In order to cope with this degeneracy of the particular
solution up ∼ ex−y with one of the homogeneous solutions uh1 = f2,0(−x+
+y) the procedures uPmodifySingular [up, onoff] and optimizeSoluti
on[χ, φ, up, onoff] give rise to the following ansatz (a1x + . . . + aκx

κ)×
×ex−y with multiplicity κ = 1; thus the resulting solution turns out to be
up = 1

8xex−y. Testing the resulting solution with testDE[χ, φ, uh + up, Off]
verifies the correctness.

(2)(2)(2) trigonometric nonhomogenuity φ = φ2 = sin | cos(. . .).
This is a parabolic 2nd order PDE�

3D2
x −Dy + 4Dz

�
u(x, y) = sin (ax + by + cz).

11



χ =
�
3Dx

2 −Dy + 4Dz

�
; φ = sin[ax + by + cz];

DESolve[χ, φ, "Off"];
The particular solution is

up =
(b− 4c) cos(ax + by + cz)− 3a2 sin(ax + by + cz)

9a4 + (b− 4c)2

is again verified by testDE.
(333) hyperbolic nonhomogenuity φ = φ2 = sinh | cosh(. . .).
For the 4th order PDE :

�Dx
4 + 3Dx

2Dy + 2Dt

�
u(x, y, t) = sinh(y)

χ =
�Dx

4 + 3Dx
2Dy + 2Dt

�
; φ = sinh[y];

DESolve[χ, φ, "Off"];
there occurs an exceptional case: in the process of ’rationalizing’ χ−1 the
denominator reduces to Dt and will vanish after applying the appropriate

replacement rules {Dt
n → 0,Dx

n → 0, Dy
n →

8<:1 n = even
Dy n = odd

9=; . However,

the routine dTermsException copes with the situation χR = ∞ and
instead handles the antiderivative D−1

t ⇒ J [t] sinh y] which gives rise to
the correct result t

2 sinh(y) which is supplemented by α1 sinh (y) which is
verified by testDE. The particular solution is up = t

2 sinh(y)+ +α1 sinh(y)
which is verified by testDE:

(444) multiplicative nonhomogenuity φ = φ1 · φ2 = e(...) · sin | cos | sinh |
cosh(. . .).

For the 4th order PDE:�
3D4

x −Dy + D2
z

�
u(x, y, z) = eαx+βz sinh(bx + ay).

χ =
�
3D4

x −Dy +D2
z

�
; φ = eαx+βz sinh[bx + ay];

DESolve[χ, φ, "Off"];
there is {Dx,Dy,Dz} whereas the coefficient list from φ2 gives only b, a
(originating from φ2 = sin(bx + ay).

Hence, in this specific case the coefficient list must be extended with the
help of makeListsEqualLength[varD,φ, onoff] to {b, a, 0} so that
the correct replacement list will be instead {Dx → b,Dy → a,Dz → 0}.
The correct particular solution is

up =
�
exα+zβ

�
3a

�
b4 + 6b2α2 + α4

�
cosh [bx + ay]+

+
�
−12abα

�
b2 + α2

�
+ β2

�
sinh [bx + ay]

��
/�

−9a2
�
b2 − α2

�4 − 24abα
�
b2 + α2

�
β2 + β4

�
12



verified by testDE.
(555) additive (non-monomial) nonhomogenuity φ2 =

kP
i=1

φ2i with φ2i =

= exp | sin | cos | sinh | cosh.
The example given makes essentially use of uPnonMonomialφ21⊕φ22

to deal with the sum of non-monomial terms φ21 + φ22 + φ23 + . . ..
For the 4th order PDE :

�
D4

x + 3D2
xDy + 2Dt

�
u(x, y) = φ were the

nonhomogenuity φ = α ex−y + sin(x + y) + cos(t − x) + 2 sinh(x − 2y+
+3t) + 3 cosh(x + 2y − 3t) is a mixed sum of exponential, trigonometric
and hyperbolic functions

χ =
�D4

x + 3D2
xDy + 2Dt

�
;

φ = γex−y + sin [x + y] + cos [t− x] + 2 sinh [x− 2y + 3t] + 3 cosh[x+
+2y − 3t];

DESolve[χ, φ, "Off"];
the particular solution is

up = −1

2
γex−y +

1

10
(sin (x + y) + 3 cos (x + y))+

+
1

5
(2 sin (t− x)+cos (t− x))+2 sinh (3t + x− 2y)+3 cosh (3t− x− 2y)

and is verified by testDE.
(666) monomial nonhomogenuity

φ = φ3 = M(x, y, z, . . .) =
kP

i=1
αix

kiymizni · . . ..
Pure monomial nonhomogenuity φ1 = M(x, y, z, . . .) = φ11 + φ12+

+φ13+. . . = αtk1xm1yn1 ·. . .+βtk2xm2yn2 . . .+. . . gives rise to an expansion
of χ−1 into a truncated geometric series. The order iMax of the truncated
geometric series expansion is determined in a heuristical way as sum
of leading exponents ni of the monomial variables in φ1, i. e. iMax=
= k1 + m1 + n1 + . . .. (In case of a rational term x−m

i the minimum
exponent is chosen for iMax= |m| ). However, this approach sometimes
leads to huge expansion order which has to be corrected by a global
positive variable $jMax (where its default value is 0) to diminish the
expansion order. iMax serves as input to the routine truncatedSeries[χ,
leadD, iMax-$jMax, onoff]. E. g. χ = (Dt + 2Dx + 3Dy − 7Dζ) with
leadD = Dt as leading term gives rise to

χ−1 = D−1
t · 1

1−
 
−2Dx

Dt
− 3Dy

Dt
+

7Dζ

Dt

!| {z }
ρD

=

13



= D−1
t · 1

1− ρ/Dt
=

iMaxX
i=0

D−(i+1)
t · (ρ)i.

Only in cases where the differential operator polynomial χ (Dt,Dx, . . .)
is not too complicated and the nonhomogenuity φ is only a monomial then
the built-in procedure DSolve is (sometimes) able to calculate a solution.

The 1st order PDE in the variables {t, x, y, z}:

(Dt + 2Dx + 3Dy − 4Dz) u(t, x, y, z) = (3x + y) + 5x4y5t6 + αxy2z3.

χ = (Dt + 2Dx + 3Dy − 4Dz); φ = (3x + y) + 5x4y5t6 + αxy2z3 ;
$jMax = 14;
DESolve[χ, φ, "Off"];

has the solution up where the expansion order is reduced from iMax=
= 6 + 4 + 5 + 3 = 18 down to order 4 by subtraction of $jMax=14.

up =
25920

77
t11y−2160

7
t10xy2+

600

7
t9x2y3−75

7
t8x3y4+

5

7
t7x4y5−768

5
t5yα+

+t4
�
16xy2α− 144yzα

�
+ t3

�
16xy2zα− 48yz2α

�
+

+t2
�
6xy2z2α− 6yz3α

�
+ t

�
xy2z3α + 3x + y

�
.

In order to test the efficiency of the implementation of MIDO the
following examples have been investigated:

( iii) χ = (Dx +Dy −Dz) with φ = (x+y+z)n, n = 1, 2, 15, 20, 30, 50,
70, 100);

( iiiiii) χ =
�
Dk

x +Dk
y −Dz

k
�
with φ = (x + y + z)10, k = 1, 2, 3, 5, 10).

For case ( iii) with n = 100 one has to choose $jMax= 3n − 1 = 299
(!) to reduce the expansion order to iMax= 1 so that there results an
antiderivative J [x]m with respect to the leading term Dx up to order
m = 2 , i. e. 1J [x] − DyJ [x]2 + DzJ [x]2. The particular solution up

consists of 5253 terms,

up =
x101

101
+
¿ 1 À

101
+ ¿ 200 À +

+x
�
y100 + 100y99z + 4950y98z2 + 161700y97z3 + 3921225y96z4+

+75287520y95z5+ ¿ 90 À +3921225y4z96 + 161700y3z97+

+4950y2z98 + 100yz99 + z100
�
.

14



For case ( iiiiii) with k = 5 it requires $jMax = 3n − 1 = 29 to reduce
the expansion order. There results an antiderivative J [x]m with respect to
the leading term Dx up to order m = 2k = 10. The particular solution is :

up =
x15

360360
+

yx14

24024
+

zx14

24024
+

y2x13

3432
+

z2x13

3432
+

yzx13

1716
+

+
y10z5

120
+

y11z4

264
+

y12z3

792
+

y13z2

3432
+

y14z

24024
.

( 777)monomial nonhomogenuity with rational part φ = φ3 = x±my±nz±k·
. . ..

This is an elliptic 2nd order PDE
�
D2

x +D2
y +D2

z

�
u(x, y, z) = βx−5y4z

with a monomial containing a rational term x−5.
χ =

�
D2

x +D2
y +D2

z

�
; φ = βx−5y4z; $jMax= 3;

DESolve[χ, φ,"Off"];
The particular solution is

up =
zβ

12x3

�
−12x4 − 6x2y2 + y4 + 12x4 log(x)

�
.

( 888) monomial · log nonhomogenuity φ = φ3 = x±my±nz±k · . . . log (y).
This is an elliptic 2nd order PDE

�
D2

x +D2
y +D2

z

�
u(x, y, z) = βx−5y4z

with a monomial containing in addition a rational term z−4 and a logarthmic
term log (z).

χ =
�
D2

x +D2
y +D2

z

�
; φ = x2y3z−4 log[z]; $jMax= 0;

DESolve[χ, φ, "Off", Simplify];
The particular solution is

up =
y

36z2

�
5x2y2 + 72z4 +

�
22y2z2 − 24z4 + 6x2

�
y2 + 11z2

��
log(z)+

+6z2
�
3x2 + y2 − 6z2

�
log(z)2

�
.

( 999) monomial · exponential nonhomogenuity φ = φ3 · exp(. . .).
This is a 3rd order PDE

�Dx
3 + 3Dy

2 +Dz − 4
�
u(x) =

�
ax + by2 + cz3� ·

· �α + x + y4� ez with the product of two monomials multiplied with an
exponential function.

χ =
�D3

x + 3Dy
2 +Dz − 4

�
; φ =

�
ax + by2 + cz3� �α + x + y4� ez;

DESolve[χ, φ, "Off", polyForm];
The particular solution is

up = ez

�
−by6

3
− 1

3
cz3y4 − 1

3
cz2y4 − 10by4 − 2cy4

27
− 1

3
axy4 − 2

9
czy4−
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−4cz3y2 − 8cz2y2 − 120by2 − 32cy2

9
− 4axy2 − 1

3
bxy2 − 8czy2−

−1

3
bαy2 − 8cz3 − 1

3
cxz3 −−ax2

3
− 24cz2 − 1

3
cxz2−

−240b− 160c

9
− 8ax− 2bx

3
− 2cx

27
− 32cz−

−2cxz

9
− 1

3
cz3α− 1

3
cz2α− 2bα

3
− 2cα

27
− axα

3
− 2czα

9

!
.

( 101010) monomial · trigonometric nonhomogenuity φ = φ3 · sin | cos(. . .).
This is a 3rd order PDE

�
D3

x + 3D2
y − 4

�
u(x, y) = xy2 · cos (5x + 3y)

with a monomial xy2 multiplied with cos (5x + 3y).
χ =

�
D3

x + 3D2
y − 4

�
; φ = xy2 cos [5x + 3y];

DESolve[χ, φ, "Off", Simplify];
The particular solution is

up =
1

9459684612549602
(− (8293x (−134245548+

+1156873500y + 2131989319y2
�
+

+450
�
12178155469 + 39626027250y + 84041643478y2

��
cos (5x + 3y)+

+
�
−8293x

�
450837750 + 2188953936y + 8596731125y2

�
+

+75
�
15605928750 + 212466759516y + 266498664875y2

��
sin (5x + 3y)

�
.

( 111111) monomial · hyperbolic nonhomogenuity φ = φ3 · sinh| cosh(. . .).
This is a 3rd order PDE

�
Dx

3 + 3D2
y − 4

�
u(x, y) = y · cosh (5x) with

a simple monomial y multiplied with cosh (5x).
χ =

�
D3

x + 3D2
y − 4

�
; φ = y cosh [5x];

DESolve[χ, φ, "Off"];
The particular solution is

up =
4y cosh(5x)

15609
+

125y sinh[(5x)

15609
.

( 121212) additive nonhomogenuity

φ =
kP

i=1
φi with φi = M(. . .)| exp | sin | cos | sinh | cosh(. . .).

This is a 4th order PDE
�D2

t + 2D4
x + 3D2

xDy − 4Dz

�
u(t, x, y, z) = φ

with a sum of a monomial part φ1 and non-monomial part φ2 : φ1 =
= (3x + y) + αx4y5t6 + βxy2z3; φ2 = αex−y + sin (x + y) + cos (t− x)+
+2 sinh (x− 2y + 3t) + 3 cosh (x + 2y − 3t).
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χ =
�D2

t + 2D4
x + 3D2

xDy − 4Dz

�
; $jMax = 15;

φ1 = (3x + y) + αx4y5t6 + βxy2z3;
φ2 = αex−y +sin [x + y]+cos [t− x]+2 sinh [x− 2y + 3z]+3 cosh[x+

+2y − 3z];
DESolve[χ, φ1 + φ2, "Off" ];
The particular solution up is (collected with respect to powers of t:

up1 =
1

154
t12y3α + t10

�
− 1

28
x2y4α− y5α

105

�
+

+t8
 

1

56
x4y5α +

1

105
xy2β

!
+

2

15
t6xy2zβ+

+
1

2
t4xy2z2β + t2

 
1

2
xy2z3β +

3x

2
+

y

2

!
up2 = −αex−y − 3

160
(cosh (x + 2y − 3z)− 9 sinh (x + 2y − 3z)) +

+
1

80
(− sinh (x− 2y + 3z)− 9 cosh (x− 2y + 3z)) +

+ cos (t− x) +
1

13
(2 sin (x + y) + 3 cos (x + y)) .
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