дзе t –эта вектар зрэшэння аптычнага цэнтру камеры паміж здымкамі, а R – матрыца яе паварота. Атрымаць іх значэнні ў смартфонах пад кіраваннем сістэмы Android можна з дапамогай метадаў клясу Sensor, які дазваляе карыстацца ўбудаваным акселерометрам ды гіраскопам.

Літаратура

- MobileAugmentedRealitySurvey: A Bottom-upApproach./ C. Peylo, Z. Huang, D. Chatzopoulos, P. Hui // Hong Kong University of Science and Technology, Hong Kong & Telekom InnovationLaboratories, Germany – 2013
- 2. Computer vision/ L.Shapiro, G. Stockman// Prentice Hall 2001 c. 127 335.
- Pose Tracking from Natural Features on Mobile Phones./ D. Wagner, G. Reitmayr, A. Mulloni // Proceedings of ISMAR – 2008 – c. 125–134.
- 4. Multiple View Geometry in Computer Vision/R.I. Hartley, A. Zisserman// NYU Computer Science Technical Report 1999 #3

ГЕНЕРАЦИЯ ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ ФОТОПРОВОДЯЩИМИ ПОЛУПРОВОДНИКОВЫМИ АНТЕННАМИ, ВОЗБУЖДАЕМЫМИ СУБПИКОСЕКУНДНЫМИ ЛАЗЕРНЫМИ ИМПУЛЬСАМИ

В. В. Кузьмицкий, П. А. Зезюля

введение

Терагерцовое (ТГц) излучение – это электромагнитное излучение, находящееся в интервале частот от 0,1 до 10 ТГц [1]. В ТГц области находятся линии поглощения неорганических соединений, частоты изгибных колебаний полимеров, в т.ч. белков и нуклеиновых кислот [1, 2]. В настоящее время интенсивно разрабатываются методы получения ТГц изображений, в т.ч. в медицинской диагностике, а также для обнаружения и идентификации скрытых предметов и веществ [1].

Широко используемым в настоящее время является метод ТГц спектроскопии во временной области, позволяющий детектировать одновременно амплитуду и фазу ТГц импульса [3]. В этом случае в качестве ТГц излучателей и приёмников используются однородные полупроводники или фотопроводящие антенны, возбуждаемые субпикосекундными лазерными импульсами. В данной работе проведено численное моделирование ТГц генерации фотопроводящими антеннами.

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТГЦ ГЕНЕРАЦИИ ФОТОПРОВОДЯЩИМИ АНТЕННАМИ

Фотопроводящая антенна представляет собой два металлических электрода, которые расположены на полупроводниковой подложке на некотором расстоянии друг от друга. Для численного моделирования учитывались параметры антенн с прямоугольной формой контактов (I) и антенны-бабочки (II) производимых немецкой компанией ВАТОР [4]. Изображения моделируемых антенн с размерами приведены на рис. 1 а, б. Материал подложек антенн – GaAs. Для области между контактами, возбуждаемой лазерным импульсом, введен материал GaAs с фотовозбужденными носителями заряда (далее GaAs_{возб}). Слой GaAs_{возб} представлен цилиндром (рис. 1 в), высота которого составляет 1/α≈0,8 мкм, где α≈1,2·10⁶ м⁻¹ [5] – коэффициент поглощения излучения титансапфирового лазера (длина волны λ=800 нм) в GaAs. Диаметр цилиндра равен ширине зазора между контактами. Для расчёта параметров этого материала на ТГц частотах использовалась модель Друде, учитывающая, что концентрация фотовозбуждённых носителей заряда на поверхности полупроводника составляет $N=\alpha W/\hbar\omega$ (энергия кванта накачки $\hbar\omega=1,55$ эВ, поверхностная плотность энергии накачки W=0,2 мкДж/см²).

Рис. 1. Размеры фотопроводящих антенн, мкм: *а)* антенна I, *б)* антенна II, *в)* область GaAs_{возб} между контактами (антенна I)

Параметры полупроводниковых материалов, рассчитанные на основе модели Друде, приведены в таблице (вклад фотовозбужденных дырок не учитывался вследствие их много большей эффективной массы по сравнению с эффективной массой электронов). Материал контактов – золото. Для компьютерного моделирования использовался программный пакет Ansoft HFSS версии 13.0.2 позволяющий производить электродинамиче-

ские расчеты методом конечных элементов [6]. Для моделирования ТГц генерации фотоантеннами во временной области использовался тип решения Transient. Возбуждение структур задавалось броском тока гауссовой временной формы с амплитудой 1 А [7] по объёму области GaAs_{возб} между контактами антенн:

$$j(t) = j_0 \exp -4t^2 \ln 2/\tau_g^2 , \qquad (1)$$

где j(t) - плотность тока, $\tau_g = 300 \ \phi c$ – длительность импульса тока по полувысоте.

Таблица

параметры материалов на частоте т тт ц		
Параметр	GaAs	GaAs _{B036}
Относительная диэлектрическая проницаемость	11,56	10,87
Тангенс угла диэлектрических потерь	0	0,52
Объёмная проводимость, 1/Ом м	0	314,7

Параметры материалов на частоте 1 ТГц

АНАЛИЗ РЕЗУЛЬТАТОВ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

На рис. 2 *а*, δ представлены временные зависимости произведения проекции напряженности электрического поля ТГц импульса на ось *Оу* на расстояние до источника в дальней зоне в отрицательном направлении оси *Oz* (рис. 1 *в*). По данным временным формам, в программном пакете MATLAB были рассчитаны их амплитудные спектры (рис. 2 *в*, *г*).

Можно видеть, что максимумы спектра антенн I и II составляют 1,8 ТГц и 1,2 ТГц соответственно, а ширина спектра (по уровню половинной мощности) порядка 0,6 ТГц. Следует отметить, что рассчитанные значения длительности импульсов ТГц излучения антенн (по полувысоте) примерно одинаковы и составляют порядка 0,2 пс. Наибольшая амплитуда ТГц импульса в данной модели была получена от антенныбабочки.

ЗАКЛЮЧЕНИЕ

В работе проведено численное моделирование ТГц генерации фотопроводящими антеннами, получены временные формы ТГц импульсов, по которым рассчитаны их спектры. Получено, что максимум спектра антенны-бабочки соответствует меньшей частоте, чем у антенны с прямоугольной формой контактов, что качественно согласуется с результатами экспериментальной работы [8].

Рис. 2. Временные формы (ВФ) и спектры (СП) излучения антенн: ВФ – *a*) антенна I, *б*) антенна II; СП - *г*) антенна I, *д*) антенна II

Литература

- 1. *Царев М.В.* Генерация и регистрация терагерцового излучения ультракороткими лазерными импульсами: учебное пособие / Нижний Новгород: Нижегородский гос. ун-т, 2011.
- 2. *Цуркан М.В.* [и др.] Исследование спектра ДНК методами ТГц спектроскопии // Оптика и спектроскопия. 2013. Т. 114, № 6. С. 981 986.
- 3. *Han P.Y.* [et al.] A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy // J. of Appl. Phys., 2001. Vol. 89, № 4. P. 2357 2359.
- 4. Интернет-адрес: https://batop.de.
- 5. *Johnston M.B.* [et al.] Simulation of terahertz generation at semiconductor surfaces // Phys. Rev. B. 2002. Vol. 65. P. 165301-1 165301-8.
- 6. Банков С.Е., Гутцайт Э.М., Курушин А.А. Решение оптических и СВЧ задач с помощью HFSS / М.: «Оркада», 2012.
- 7. *Boini V.K.* Modelling of Photoconductive Antenna / Guwahati: Indian Institute of Technology Guwahati, 2015.
- Tani M, Matsuura S., Sakai K., Nakashima S.-I. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs // Applied optics, 1997. Vol. 36, № 30. P. 7853-7859.