- 2. *Кемени, Дж.* Конечные цепи Маркова. / Дж. Кемени, Дж. Снелл. М.: Наука, 1976. 276 с.
- 3. *Харин, А.Ю*. Робастность байесовских и последовательных статистических решающих правил / А.Ю. Харин. Минск: БГУ, 2013. 207 с.
- 4. *Tartakovsky*, *A*. Sequential analysis: Hypothesis testing and changepoint detection / A. Tartakovsky, I. Nikiforov, M. Basseville. New York: CRC Press, 2015. 574 p.
- 5. *Wald*, A. Sequential analysis / A. Wald. New York: John Wiley and Sons, 1947. 212 p.
- 6. *Kharin, A.Y.* An approach to performance analysis of the sequential probability ratio test for the simple hypotheses testing / A.Y. Kharin // Proceedings of the Belarusian State University. 2002. Vol. 1. P. 92–96.

МОДЕЛИРОВАНИЕ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТАНА ОСНОВЕ МЕТОДА ДИСКРЕТНЫХ ЭЛЕМЕНТОВ

В. В. Чайко

1. ОПИСАНИЕ ПРОБЛЕМЫ И ЦЕЛЬ РАБОТЫ

Гидравлический разрыв пласта (ГРП) – процесс нагнетания жидкости в подземный пласт под давлением, достаточно высоким для того, чтобы вызвать разрыв этого пласта. Данный технологический процесс имеет высокую промышленную применимость в сфере добычи полезных ископаемых для интенсификации работы нефтяных и газовых скважин [1].

При проектировании ГРП важную роль занимает прогнозирование геометрии трещины в зависимости от гидромеханических характеристик материалов, темпа нагнетания жидкости, локальных напряжений в пласте. При этом необходимо принимать в расчет целый набор физических явлений: упругую и пластичную деформацию пласта, распространение трещины, динамику жидкости в области трещины, фильтрацию жидкости в пласте, естественную трещиноватость и прочее.

Цель данной работы спроектировать математическую модель, описывающую вышеназванные процессы и реализовать вычислительно эффективную систему для симуляции гидроразрыва.

2. ОПИСАНИЕ РАЗРАБОТАННОЙ МОДЕЛИ

Для обеспечения возможности моделирования всего набора физических процессов, происходящих при гидроразрыве необходима разработка метода, состоящего из нескольких численных схем для решения

определенных подзадач, а также правил объединения этих схем в один вычислительный алгоритм.

Итерация (Рис. 1) разработанной схемы состоит из последовательности меньших итераций, строящих решение соответствующих подзадач на текущем временном слое, а именно:

- Механическая схема строит решение задачи упругой деформации пласта.
- Фильтрационная схема строит решение задачи фильтрации флюидов в пористой среде пласта.
- Гидравлическая схема строит решение задачи течения флюидов в области трещины.

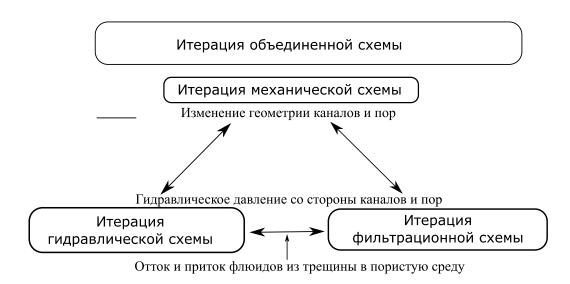


Рис. 1. Итерация объединенной схемы

Моделирование напряженно-деформированного состояния проводится с помощью дискретно-элементной схемы, известной в литературе как RMIB [2]. Выбор такой схемы обусловлен возможностью создания эффективного алгоритма для систем GPGPU.

В фильтрационная схеме для моделирования фильтрации жидкости используется понятие пор и каналов. Поры располагаются в центре ячеек сторонами, которых являются связи RMIB-схемы (Рис. 2). Поры пропускают жидкость через связывающие их каналы согласно законам фильтрации в пористой среде.

В гидравлической схеме используется модель, схожая с применяемой в фильтрационной схеме. Однако здесь течение флюидов по каналам подчиняются законам ламинарного течения в трубах. Подобная методика моделирования динамики жидкости в области трещины используется в [3].

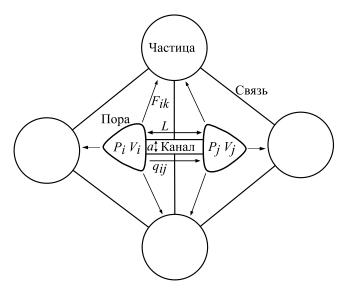
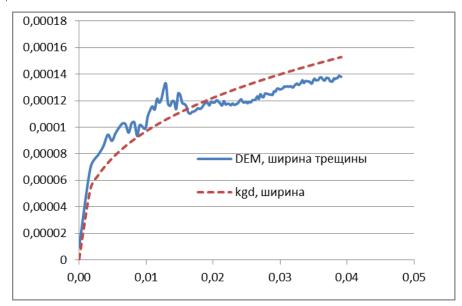
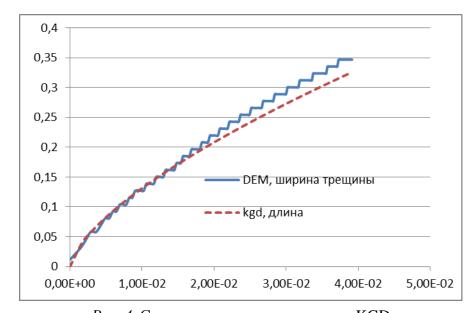


Рис. 2. Схема фильтрационной модели

Полученные результаты каждой подзадачи влияют на решение других подзадач на следующем временном слое:


- Механическая схема изменяет геометрические характеристики пор и каналов, используемых для расчета гидравлической и фильтрационной итерации.
- Давление на стены трещины, а также поровое давление, полученное в гидравлической и фильтрационной итерации, учитывается при расчете сил механической итерации.
- Объемы флюидов в трещине изменяются в ходе утечки в пористую среду.

3. ТЕСТИРОВАНИЕ МОДЕЛИ


При проектировании ГРП распространено применение моделей, предсказывающие длину и среднюю ширину трещины в конце нагнетания, одинаковую в пределах фиксированной высоты. Как правило такие модели, в связи с использованием некоторых допущений, достаточно просты, для того чтобы получить аналитическое решение для геометрии трещины. При относительно небольших длинах трещин удобно использовать модель Христиановича-Желтова-Геертсма-де Клерка (KGD) [4].

При верификации объединенной моделибыл проведен набор численных экспериментов, методика которых позволяла сравнивать результаты, полученные в ходе экспериментов с результатами модели КGD. При моделировании трещины изучалась динамика изменения ее ширины и длины со временем. При этом изменялись физические параметры пласта и флюидов, дискретизации модели и дебит в скважине.

Результаты, полученные в ходе вычислительных экспериментов, оказались похожи на предсказания модели KGD (Рис. 3 и 4). Расхождение с аналитическим решением наблюдалось в основном ввиду неустойчивостей, по причине сильных скачков давления в силу специфики практических задач.

Puc. 3. Сравнение ширины трещины с KGD

Puc. 4. Сравнение ширины трещины с KGD

Литература

- 1. Экономидис М., Олайни Р., Валько П. Унифицированный дизайн гидроразрыва пласта. / М.: Орса Пресс, 2004.
- 2. *Zhao G*. Development of Micro-Macro Continuum-Discontinuum Coupled Numerical Method / Thèse École polytechnique fédérale de Lausanne EPFL.

- 3. *Khristianovitch S. A., Zheltov Y. P.* Formation of Vertical Fractures by Means of Highly Viscous Fluids // World Pet. Cong. 1955, P. 579–586.
- 4. Fu P., Johnson S. M., Carrigan C. R. An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks // Int. J. Numer. Anal. Meth. Geomech. V. 37, 2013, P. 2278–2300.

БАЙЕСОВСКИЙ ПОИСК ГЕННЫХ КОМБИНАЦИЙ АССОЦИИРОВАННЫХ С ПЕРВИЧНОЙ АРТЕРИАЛЬНОЙ ГИПЕРТЕНЗИЕЙ НА ОСНОВЕ МЕТОДА МСМС

Ю. В. Шруб

ЦЕЛИ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Первичная артериальная гипертензия (ПАГ) принадлежит к наиболее многочисленной группе мультифакториальных заболеваний, на развитие которых оказывают влияние как генетические, так и экзогенные факторы. Генетическая предрасположенность к развитию ПАГ признана одним из достоверных факторов риска развития данного заболевания, при котором потомству передается не болезнь, а признаки, определяющие предрасположенность к ней. Один из наиболее перспективных подходов к оценке генетической предрасположенности к ПАГ – это изучение генов, определяющих функционирование систем, влияющих на развитие и прогрессирование АГ [1].

Целью настоящего исследования является решение следующих задач:

- 1. Подготовка обзора методов и программного обеспечения, предназначенного для обработки генетических данных.
- 2. Разработка алгоритма поиска комбинаций генов на основе метода Монте-Карло на основе цепей Маркова (Markov Chain Monte Carlo MCMC) [4] с использованием программы APSampler [7].
- 3. Выявление комбинаций генов на основе выборки реальных данных генетического обследования пациентов [1]. Выявленные комбинации генов предназначены для использования в статистической модели оценки предрасположенности к АГ индивидов на основе генетических факторов и факторов риска.

ОПИСАНИЕ ИСПОЛЬЗУЕМОГО МЕТОДА И АЛГОРИТМА

Основным отличием метода Монте-Карло на основе цепей Маркова от классического метода Монте-Карло является различный подход к моделированию последовательности X для вычисления математического ожидания, а именно, в МСМС моделируется однородная цепь Маркова