Proceedings of
the XXVII Summer School, Sozopol'01

Applicf‘,o’rions
I\/IoTt?emo’rics
N
Engineering
and
Economics

edited by
D. Ivanchev and M.D. Todorov

FACULTY OF
APPLIED MATHEMATICS & INFORMATICS
TECHNICAL UNIVERSITY OF SOFIA

g

HERON PRESS - Sofia - 2002

Applications of Mathematics in Engineering and Economics’27
eds. D. lvanchev and M.D, Todorov, Heron Press, Sofia, 2002

Quickest path problem

L. A. Pilipchuk!, Y. H. Pesheva’

! Faculty of Applied Mathematics and Computer Science,
Belorussian State University, F.Skarina Avenue 220050, Minsk, Belarus
*Technical University of Sofia, P.O.Box 384, 1000 Sofia, Bulgaria

Let us consider the quickest path of a given length k (k-flow) problem. It allows
us to determine the quickest path among all paths that contain k arcs. For the first
time the quickest path problem was mentioned in [1]. The mathematical model
of the quickest path of a given length problem is the following:

G ;
Z (C.‘j +6;5 d—) Tjj — mun,
ij

(i,g)ev
1, §=1,
Z Eij — Z Tji = —1, T:Zt,
jerf (u) jeIr (U) 0, i€rl\{s,t}.
Bihees 1 (?’93) - (iﬂj*}: if d!'-.j.- — minrij#ﬂ{dija (?‘\J) € U}r
& 0, (i,5) € U\ (ix;Jn)-

xij € {0‘1}$ (%!J) € U!

Z xij = k: M g U:
(i,j)eM

IFU)={j:(G,4)eU}, I7(U)={j: (i) eU}

where § = {I,U} is a connected directed net without parallel arcs and loops
with a set of nodes I and a set of arcs U; d;; is the capacity of the arc (3, j); z;;
is the flow of the arc (4, j); ¢;; > 0 is the time needed to pass the arc (i, j) € U,
passing time; ¢;; > 0, sisthe source, is the destination, M is the set of arc of the
path from s to ¢ without repeated nodes. Capacity d;; of the arc (i, j) stands for
the maximum number of data units, transferred from the node i to node j within
a time unit. The time ¢;; of the arc (7, j) traversal stands for the time consumed
while sending G' data units from the node i to the node j through the arc (i, J).

385

386 L.A. Pilipchuk, Y.H. Pesheva

While solving the problem of the quickest path of a given length k from node
s to node ¢ the aim is to get a set of the prevalent paths for node £.

Recall [2] that the path L; from the node s to the node ¢ with capacity equal
to ¢; is prevalent over the path L; with the capacity equal to ¢; if the following
relations hold true:

T; <Tj, ¢ 2 ¢4, or T3 < Ty, ¢ > ¢4,

;= Z By Ay = Z Cijs

(i) €L; (i.f)eL;

T; is the time of the path L; traversal and T is the time of the path L; traversal.
Then the time of the flow G transference through the path Ly, is equal to

G : b
Tp 5 = ;, Cp = MIN(;,j)eL,Cijy P= 1],

Let @, stand for the set of prevalent paths for node ¢. This set has a lot of
characteristics [2].

Theorem 1 For any paths L;, L; € Qy the following inequalities hold:

Ti<Ty, i< e orTy 5Ty, >0y (1

Proof. Let 7; > Tj, and ¢; < ¢;. The equality is possible in only one of these
inequalities. Then the path L; is prevalent over L;. This contradicts to the fact
that the path L; is prevalent and belongs to the set of prevalent paths. The case
T; < T; and ¢; > c; can be proved in the same way. The theorem is proved.

The set of prevalent paths can be ordered with the passing time and the ca-
pacity ascending.

Theorem 2 Let Ly € @Q; be some prevalent path, which passes through node
i € I. Then the subpath L; (part of the path from the source to node i) is a
prevalent path for this node i, i.e., L; € Q;.

Proof. Let there be a path L; € Q;, which is prevalent over the path L; € Q;.
Then the passing time and the capacity of the paths L; satisfy the relations (1).
Let us substitute the subpath L; of the path L, with the prevalent path L;. Ac-
cording to (1), the passing time of the obtained path L; is less than the passing
time of the path L, with the same or greater capacity or with the greater capacity
and the same passing time. But this contradicts to the statement that the path is
a prevalent path for the node ¢. The theorem is proved.

|

Quickest path problem 387

So, for any paths L;, L; € @, the following inequalities hold true:
T < Ty < ey orT; > Tj, ci > ¢j.

In one of the inequalities of each group the equality is possible. Hence, the
set of the prevalent paths can be arranged in the order, in which the traversal time
and the capacity are ascending.

If Ly € 4 is a prevalent path for the node ¢, which passes through node
i € I, then the subpath L; (part of the path L; from the source to node ¢) is a
prevalent path L; € @; for this node.

Though not every path from the set of prevalent paths is a solution with some
G'. The alternative is possible when the prevalent path is not the quickest one no
matter what the transferred data quantity is. The set of prevalent paths has certain
characteristics that allow to derive conditions of the completion of the algorithm
“in advance” while solving the quickest path problem with the transferred data
quantity G given a priori.

Let G be given and a certain path be determined. The cost function for this
path with this G is Fg. If the time of another path traversal is greater than Fg,
that path cannot be the quickest one no matter what the capacity is.

When using the algorithm, that extracts prevalent paths with traversal time
ascending we can stop the algorithm exactly when the traversal time of the new
path exceeds the best cost function value for all already known paths.

The same can be derived for the case of the prevalent path extraction with the
capacity descending. Let G be given and a certain prevalent path be determined.
Let the cost function value for this path with this G is Fiz. Then if the capacity
of some other path is less or equal to %, then this path cannot be the quickest
one no matter what the traversal time is. When using the algorithm, that extracts
prevalent paths with the capacity descending, we can stop the algorithm exactly
when the newly derived path capacity is greater or equal to %

Let d; be the already known minimum time of the path traversal from s to
i. Letd; = oo,4 € I'\ {s} andd, = 0. Let us order the arcs of the net with
their capacities descending, and add them to the net just in the same order. In
the process of adding the arc (i, j) with capacity d;; and traversal time ¢;; the
following steps should be carried out:

1. If di # o0 and d; + ¢;; < dj, that is if we have found a path to j with a
lower time than known before, then we should recalculate graph’s labels
starting with node j. Dijkstra algorithm with the priority queue [3] or basic
algorithm modification can be used for this recalculation.

2. If dy has been changed after recalculation, we add a new path to the list of
the prevalent paths of node ¢. The capacity of this path is equal to di; and
traversal time is equal to d;.

388 L.A. Pilipchuk, Y.H. Pesheva

So, while adding the appropriate arc in the descending order, it is checked for
each capacity, whether a path from s to ¢ with time traversal which is less than
already known ones exists. If it exists and its time traversal is less than the time
traversal of the already derived path, then there are no prevalent paths over this
newly derived one and it is added to the set of the prevalent paths. Otherwise the
already known paths are prevalent over the newly derived one. So, this algorithm
extracts the whole set of prevalent paths for the given node.

During the realization of the algorithm which finds the shortest paths in the
formed graph of the connected components there is an opportunity to modify the
algorithm in order to consider the data that has been already obtained at the previ-
ous steps of the algorithm. According to Dijkstra’s algorithm which uses heaps it
can be realized in the following way: when recalculating the marks d; we should
take into consideration the marks that were obtained at the previous algorithm
steps. It means to store the mark values, while applying Dijkstra’s algorithm to
the already known ones. So, it is necessary to solve the quickest path problem
from node s to node ¢ on the net where the traversal time stands for the arc length.

It is obvious that the path with the length k& which minimizes this value is the
quickest path of the given length in the initial net.

Theorem 3 The number of operations of the algorithm where capacities stand
in the descending order is equal to O(m?® + mn logn) where n stands for the
number of nodes, and m stands for the number of arcs of the initial net S.

Proof. The maximum number of algorithm steps is equal to the maximum num-
ber of arcs (equal to) in the net. In the worst case at each step of the algorithm
the shortest path problem is being solved. The process of solving the shortest
path problem takes time which is equal to O(m + nlogn) [3]. So, the total time
for each step of the algorithm is equal to O(m + nlogn), and the total time for
the algorithm is equal to O(m? 4+ mn logn). The theorem is proved.

This modification has a lot of advantages. It solves the problem on a small
net gradually extending, it and in case of the problem with a given quantity of
the transferred data allows us to find the solution without analyzing the whole
net. One of the conditions, that stops the algorithm is the case when capacity of
the next added arc is less than G/ Fg.

With the help of this algorithm one can solve the problem of the quickest path
to all net nodes or to some subset of the nodes. In order to do this one should
check if the marks of nodes of the given set have changed after the recalculation
of the marks. This algorithm reduces the number of operations while finding the
prevalent path for the next capacity because it effectively uses the information
about the net that has been obtained from the previous steps.

Let us motivate this algorithm. Because the traversal time of the path is the
key element in the heap in our case. The paths extracted from the heap, have the

Quickest path problem 389

minimal time, because the passing time of the path is the key element in the heap
in our case. Such path extraction for some node i (its capacity is greater than
d;) means that there are no prevalent paths to the given node over our one. If its
capacity is less than d; than the prevalent path exists. If the path is prevalent for
the given node then all possible continuations should be considered, except for
the ones with the already known prevalent paths. Thus, at the moment the the
algorithm stops, each node will contain the list of prevalent paths to it from node
8.

Let us show the work of the algorithm on the example for the following net
(Figure 1):

Figure 1.
Capacity 9 8 i 5 4 3 2
Time 3 2 3 1 2 5 1
Arc (1,2) | 23) | @1 | (s,1) | (1,3) | (s3) | B.D)

Figure 2. Add arcs (1,2), (2,3), (2,0).

390 L.A. Pilipchuk, Y.H. Pesheva
1 4 4
w5 *(1) 139 S
s 5/@8’ o
6

Figure 3. Add arc (s,1). The mark of node ¢ changes. The first prevalent path of the given
length 3 is s-1-2-t.

1 3 4
w5 ¢ o /3 , A
' ; ° @%& @
3

Figure 4, Add arc (1,3).

Figure 5. Add arc (s,3).

Quickest path problem

391

Figure 6. Add arc (3,t). The mark of node ¢ changes. The second prevalent path of the

given length 3 is s-1-3-t.

Prevalent paths Time Capacity
s-1-2-t 7 5
8-1-3-1 4 2
References

[1] Chen, Y.L., Chen, Y.H. (1992) The quickest path problem, Computers and Opera-

tions Research.

[2] Pilipchuk L.A., Laput LV. (2000) The quickest path problem, International science
conference “Computer Network Technologies”. October, 25-29, Minsk.

[3] T.Kormen, C. Leiserson, R.Rivest (1999) Algorithms: Construction and Analysis,

MCNMO, M.

