меди из раствора объясняют тот факт, что при осаждении тонких пленок меди в потенциостатическом режиме они более крупнозернисты, протяженность межзеренных границ и параметр шероховатости понижены, а электропроводность повышена (см. рис. 1, табл. 1 и 2) при наличии в электролите золя диоксида олова. Данный факт важен при проектировании условий получения тонких проводящих пленок меди для изделий электронной техники. Обнаруженный факт осаждения более мелкозернистых тонких пленок меди с повышенным вкладом межзеренных границ при гальваностатических условиях электроосаждения в присутствии золя диоксида олова может оказаться полезным для разработки технологий синтеза тонких пленок с повышенной кроющей и защитной способностью.

#### ЛИТЕРАТУРА

- 1. Черных, А. Г. Технология изготовления интегральных микросхем: лабораторный практикум / А. Г. Черных, Б. С. Колосницын. Минск: БГУИР, 2014. 48 с. : ил.
- Материалы и структуры современной электроники: сб. науч. тр. V Междунар. науч. конф., Минск, 10-11 окт. 2012 г./ редкол.: В.Б. Оджаев (отв.ред) [и др.].-Минск: Изд. центр БГУ, 2012.
- Насонова Д. И., Воробьева Т. Н., Позняк С. К. Электрохимическое осаждение покрытий Си-SnO<sub>2</sub> на алюминий // Свиридовские чтения : сб. ст. Минск : БГУ, 2013. Вып. 9. С. 121–131.
- 4. Конаков А. О., Воробьева Т. Н., Насонова Д. И. Влияние золя диоксида олова на процесс электрохимического осаждения и свойства медных покрытий на стали, цинке, алюминии и их сплаве // Свиридовские чтения. 2016. Вып № 12 С. 67–72.
- Антонец, И. В., Особенности наноструктуры и удельной проводимости тонких пленок различных металлов / И. В. Антонец, Л. Н. Котов, С. В. Некипелов, Е. А. Голубев // Журнал технической физики. 2004. Т.74 Вып 3. С. 24–27.
- 6. Бурлаков, Р. Б. К вопросу об измерении удельного сопротивления проводящих слоев четырехзондовым методом / Р. Б. Бурлаков, В. С. Ковивчак // Вестн. Ом. ун-та – 2014. - № 2. – С. 59 – 68.
- Зариковская, Н. В. Програмный продукт по численной обработке и визуализации эксперименталльных данных по исследованию зависимости напряжение-деформация / Н. В. Зариковская [и др.] // XI Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: технические и математические науки – Москва, апрель 2014 / Москва :Изд. «МЦНО». — 2014. — № 4 (11).
- Данилов, А. И. Современные представления о процессах образования и роста зародышей новой фазы в потенциостатических условиях / А. И. Данилов, Ю. М. Полукаров // Успехи химии. – 1987. – Вып 7. – С. 1082–1097.

## ТЕМПЕРАТУРНАЯ РЕАКЦИЯ МНОГОКОМПОНЕНТНЫХ ТКАНЕЙ ПРИ ИСПОЛЬЗОВАНИИ НАНОЧАСТИЦ ПРИ ОБЛУЧЕНИИ СОЛНЕЧНЫМ ИЗЛУЧЕНИЕМ

# И. В. Красников<sup>1</sup>, А. Ю. Сетейкин<sup>1</sup>, А. П. Попов<sup>2</sup>

<sup>1</sup>Амурский государственный университет <sup>2</sup>Университет Оулу (Финляндия)

В настоящей работе, с помощью компьютерного моделирования методом Монте-Карло, определено распределение плотности поглощенной энергии света в зависимости от глубины на участке кожи, содержащей частицы ZnO и TiO<sub>2</sub> среднего размера 100 нм на глубине 0–3 мкм от поверхности кожи. Для моделирования солнечного спектра были выбраны длины волн 310, 318, 360, 400, 500, 600, 700 и 800 нм как представители УФ, видимого и инфракрасного (ИК) диапазонов спектра, так как эффекты, возникающие в ткани при воздействии излучения этих длин волн, различны.

Защита кожи человека от чрезмерного воздействия солнечного излучения, вызывающего рак кожи, на сегодняшний день является очень актуальной задачей. Общепринято, что кожа - многослойная структура [1]. Оптические параметры различных слоев кожи, такие как коэффициенты рассеяния и поглощения, показатели преломления и факторы анизотропии рассеяния излучения, различаются. Приповерхностный слой, называемый роговым, служит естественным защитным барьером для глубинных слоев кожи, имеющих в своем составе живые клетки от попадающего на кожу солнечного излучения. Для усиления защиты этих слоев при повышенном облучении УФсветом были разработаны фотозащитные препараты (ФЗП), содержащие химические (поглощающие излучение) вещества [2]. В настоящее время в целях уменьшения пропускания УФ-излучения химические компоненты частично заменяются частицами диоксида титана (TiO<sub>2</sub>) или оксида цинка (ZnO) нанометрового размера [3], обладающими ярко выраженными поглощающими и рассеивающими свойствами.

Различные аспекты распространения оптического излучения в сильно рассеивающих случайно-неоднородных средах были широко освещены в многочисленных теоретических исследованиях [1, 4, 6, 7, 8]. Наиболее универсальным и относительно простым в реализации методом является метод Монте-Карло. Метод Монте-Карло не имеет внутренних ограничений, что позволяет решать задачу распространения излучения в среде, учитывая оптические параметры биологических тканей, которые, как предполагается, могут изменяться во времени и пространстве.

Математическое моделирование распространения фотонов в ткани на основе метода Монте-Карло позволяет определить пространственное распределение поглощенной световой энергии в коже, Q [Дж/см<sup>3</sup>]. Для получения температурного поля ткани потребуется решение дифференциального уравнения нестационарного теплопереноса, где источником тепла будет служить плотность поглощенной энергии в ткани.

В данной работе площадь участка кожи для моделирования выбирается равной 1 см<sup>2</sup>. Мощность падающего излучения составляет 100 мВт. Толщина участка составляет 620 мкм, что в достаточной степени позволяет представить картину взаимодействия УФ-излучения с приповерхностными слоями кожи.

На рис. 1 представлено распределение плотности поглощенной энергии в роговом слое без наночастиц в УФ, видимом и ИК диапазоне длин волн, в том числе суперпозиция вкладов плотности поглощенной энергии всех длин волн.



Рисунок 1. – Распределение плотности поглощенной энергии в слоях кожи в отсутствии наночастиц

Вклады каждой длины волны распределяются следующим образом: УФ-Б (310 нм, 318 нм) 1.50%; УФ-А (360 нм, 400 нм) 6,30%; видимый свет (500 нм, 600 нм, 700 нм) 42,30% и ИК (800 нм) 49,40%.

Картина взаимодействия значительно меняется при внесении в роговой слой наночастиц TiO<sub>2</sub> или ZnO с объемной концентрацией 1% (рис. 2) на глубине до 3 мкм. Коэффициенты поглощения и рассеяния света роговым слоем существенно возрастают, особенно в УФ-области спектра. Поглощение света частицами TiO<sub>2</sub> приводит к многократному увеличению энерговыделения в приповерхностной части рогового слоя с частицами (глубина 0–3 мкм); наблюдается резкий спад плотности поглощенной энергии в области рогового слоя без частиц, а также в эпидермисе и дерме.

УФ-составляющая падающего излучения практически полностью поглощается поверхностным (роговым) слоем, толщиной 20 мкм, в то время как компоненты излучения с большей длиной волны проходят через роговой слой и практически полностью поглощаются лишь в толстом (100 мкм) слое эпидермиса, частично достигая дермы. Благодаря относительно большому коэффициенту рассеяния рогового слоя, часть излучения рассеивается в слое в обратном направлении [5]. Одной из основных функций рогового слоя является ослабление УФ-излучения, экранировка внутренних органов от его пагубного воздействия. Однако, незначительная часть УФ-излучения все же достигает эпидермиса и дермы.

На рис. 2 представлено распределение температуры по глубине кожи без наночастиц и с использованием 1% и 5% примеси диоксида титана в роговом слое. Учитывая постоянный кровоток во внутренних слоях кожи, мы моделировали величину конвекции на поверхности кожи 5, 10 и 15 Вт/м<sup>2</sup>. Процесс теплопереноса устанавливается в течении первых 20 секунд воздействия (результаты не представлены).



Рисунок 2. – Температура кожи при 1% (а) и 5% (б) содержании наночастиц ТіО2.

Показано, что значительная часть падающего солнечного излучения поглощается в роговом слое, содержащем наночастицы. Учитывая конвекцию на поверхности и перфузию крови, продемонстрировано, что температура кожи при наличии солнцезащитных наночастиц в роговом слое снижается. Из расчетов видно, что наночастицы диоксида титана и оксида цинка препятствуют проникновению значительной части УФ-излучения вглубь ткани, предохраняя нижележащие слои и внутренние органы от пагубного воздействия УФ-излучения.

#### ЛИТЕРАТУРА

- 1. V.V. Tuchin Handbook of Optical Biomedical Diagnostics / V.V. Tuchin –Bellingham: SPIE Press, 2002.
- R.F. Edlich, K.L. Winter, H.W. Lim, M.J. Cox, D.G. Becker, J.H. Horovitz, L.S. Nichter, L.D. Britt, and W.B. Long Photoprotection by sunscreens with topical antioxidants systemic antioxidants to reduce sun exposure //J. Long-Term Effects Med. Implants, 2004, r.14, c.317-340.
- 3. B. Innes, T. Tsuzuki, H. Dawkins, J. Dunlop, G. Trotter, M.R. Nearn, and P.G. McCormick Nanotechnology and the cosmetic chemist //Cosmetics, Aerosols and Toiletries in Australia, 2002, T.15, c.10-12, c.21-24.
- I.Meglinski, A.V. Doronin Monte Carlo modeling for the needs of biophotonics and biomedical optics / Advanced Biophotonics: tissue optical sectioning, Edited by V.V. Tuchin, R.K. Wang, Taylor & Francis, 2012.
- A.P. Popov, J. Lademann, A.V. Priezzhev, and R. Myllylä Alteration of skin light-scattering and absorption properties by application of sunscreen nanoparticles: A Monte Carlo study //J. of Quant. Spectr. and Radiat. Transfer, 2011, r.112(11), c.1891-1897
- I.Krasnikov, A. Seteikin, G. J. Lee, P. Attri, E. H. Choi, Y.W. Kwon Optical and structural properties of nanobiomaterials // J. of Nanoscience and Nanotechnology. –2014. – V.14 (1). –P. 221-49.
- I.V. Krasnikov, A.P. Popov, A.Yu. Seteikin, R. Myllylä Influence of titanium dioxide nanoparticles on skin surface temperature at sunlight irradiation // Biomed. Opt. Express. –2011. –V.2 (12). – P.3278-3283.
- S. L. Jacques and L.-H. Wang Monte Carlo modeling of light transport in tissues / Optical Thermal Response of Laser Irradiated Tissue, edited by A. J. Welch and M. J. C. van Gemert, Plenum Press, New York, 1995.

## ЛАВИННЫЕ СВЕТОДИОДЫ НА ОСНОВЕ НАНОСТРУКТУРИРОВАННОГО КРЕМНИЯ ДЛЯ ВНУТРИЧИПОВЫХ ОПТИЧЕСКИХ МЕЖСОЕДИНЕНИЙ

## С. К. Лазарук, А. А. Лешок, В. В. Дудич, В. Е. Борисенко

Белорусский государственный университет информатики и радиоэлектроники, serg@nano.bsuir.edu.by

Разработаны конструкция и технология изготовления интегрированных оптических и электрических межсоединений на кремнии. В качестве светоизлучающих диодов используются структуры на основе наноразмерного кремния, встроенного в алюмооксидную матрицу. Изготовлена оптопара с коэффициентом преобразования по току 1 %.

В настоящее время одной из актуальных задач развития интегральной электроники является повышение быстродействия. Замена электронных межсоединений на оптические позволит повысить быстродействие интегральных микросхем за счет устранения резистивно-емкостных задержек металлической разводки. Следовательно, возникает необходимость интеграции электронных и оптических межсоединений внутри кремниевого чипа. Нами разработана и изготовлена экспериментальная структура интегрированных электронных и оптических межсоединений на едином кремниевом кристалле, а также исследованы ее характеристики. Полученные результаты представлены в настоящей работе.