Как следует из полученного выражения, максимальное значение коэффициента заполнения может достигать 0,9 при $D_p = D_c$.

Нами экспериментально установлено, что скорость анодирования алюминиевой пленки V равна 0,6 мкм/с при плотности тока 2 мА/см². С учетом этого можно оценить время формирования алюминиевой наносетки с заданным коэффициентом заполнения f для размеров ячеек 50, 100, 200 и 600 нм соответственно (рисунок 3).

Таким образом, теоретически и экспериментально обоснована возможность формирования самоорганизующихся наносетчатых алюминиевых пленок с размерами ячеек D_c 50–600 нм методом управляемого низкотемпературного процесса электрохимического анодирования тонких пленок алюминия.

коэффициентом заполнения f и временем формирования алюминиевых наносетчатых пленок с различными размерами ячеек

ЛИТЕРАТУРА

- Towards understanding the difference of optoelectronic performance between micro- and nanoscale metallic layers / M.Marus [et al.]; Optical Materials Express, vol. 6, No 8, 1 August 2016, p. 2655–2661.
- 2. Influence of microscale and nanoscale size effects on optoelectronic properties of metallic patterned structures / M.Marus [et al.]; Proc. the 7th International Conference on Metamaterials, Photonic Crystals and Plasmonics META'16, Malaga, Spain, July 2016, p. 1634–1637.
- Патент на изобретение № 19945 «Слоистая наноразмерная ячеистая структура и способ ее получения» по заявке № а 20120693 Респ. Беларусь, МПК В 32 В 15/04, G 02 F 1/133, В 81 С 1/00 / А.Г. Смирнов [и др.]; Заявитель - УО «Белорусский государственный университет информатики и радиоэлектроники»; заявл. 03.05.2012, зарегистрирована 07.12.2015. Опубл. 30.04.16 // Афіцыйны бюлетэнь / Нац. цэнтр інтэлектуал. уласнасці. – 2016. – № 2. – С. 81.

ОРИЕНТАЦИОННЫЕ ЭФФЕКТЫ ПРИ ВЗАИМОДЕЙСТВИИ МОЛЕКУЛ ЖИДКОГО КРИСТАЛЛА С НАНОСТРУКТУРИРОВАННОЙ РЕЛЬЕФНОЙ ПОВЕРХНОСТЬЮ

Б. А. Казаркин¹, А. А. Степанов¹, А. Г. Смирнов¹, В. В. Беляев², Д. Н. Чаусов², А. К. Дадиванян²

¹Белорусский государственный университет информатики и радиоэлектроники ²Московский областной государственный университет

Возможность ориентации молекул жидких кристаллов (ЖК) на подложках с рельефной поверхностью была продемонстрирована в работах [1, 2]. В качестве такой поверхности можно использовать алюминиевые покрытия, подвергнутые анодному процессу окисления и формированию нанопористой структуры оксида алюминия. Тип ориентации молекул ЖК зависит от их размера и энергии сцепления с нанопористой поверхностью [3, 4]. Типы ориентации ЖК на наносетчатых пленках алюминия представлены в таблице [4].

Таблица

Диаметр пор / Энергия сцепления (Дж/м ²)	50 нм	100 нм	150 нм	200 нм	250 нм
1.10-2	планарная	планарная	планарная	планарная	планарная
1.10-4	гомеотропная	гомеотропная	наклонная	наклонная	планарная
1.10-6	гомеотропная	гомеотропная	гомеотропная	гомеотропная	наклонная

Типы ориентации молекул ЖК относительно наносетчатых алюминиевых пленок

Опыты с аналоговыми моделями показали, что при отсутствии взаимодействия ЖК с поверхностью микропоры ориентация может быть гомеотропной, если диаметр микропор приблизительно равен диаметру кластеров ЖК. Это означает, что диаметр кластеров ЖК примерно равен диаметру микропор при гексагональной упаковке, когда диаметр кластера в три раза меньше диаметра микропоры, т. е. равен 65–85 нм. При диаметре кластера 200–250 нм, если считать, что форма кластера подобна форме молекулы мезогена, число молекул в кластере оказывается равным (8 – 16)×10⁸, что более чем на два порядка больше получаемого из результатов исследования фотоориентации [3]. Следовательно, диаметр кластера должен быть равен 65–85 нм, а длина – 325–425 нм, при этом число молекул мезогена в кластере оказывается (2,2–4.8) ×10⁶, что согласуется с данными, полученными в работе [4].

На основании работы с аналоговыми моделями можно утверждать, что при отсутствии взаимодействия ЖК с поверхностью микропор планарная ориентация наблюдается при диаметре микропор минимум в два раза больше длины кластера, т. е. при значениях больше 650–850 нм.

При больших значениях энергии сцепления $\Delta G = 10^{-2}$ Дж/м² ориентация ЖК в микропорах является планарной независимо от размеров микропор; при средних значениях энергии сцепления 10^{-4} Дж/м² ориентация является гомеотропной при диаметре микропор до 100 нм ÷ 150 нм, наклонной при диаметре микропор от 150–250 нм, и переходит в планарную при размере микропор выше 250 нм.

При больших значениях энергии сцепления $\Delta G = 10^{-2} \text{Дж/m}^2$ ориентация ЖК в микропорах является планарной независимо от размеров микропор; при средних значениях энергии сцепления 10^{-4}Дж/m^2 ориентация является гомеотропной при диаметре микропор до 100–150 нм, наклонной при диаметре микропор от 150–250 нм, и переходит в планарную при размере микропор выше 250 нм.

Характер ориентации определяется свободной энергией сцепления:

$$G_{pl} = H_{pl} - TS_{pl};$$

$$G_{hom} = H_{hom} - TS_{hom};$$

где G_{pl} и G_{hom} – свободные энергии Гиббса при планарной и гомеотропной ориентации, H_{pl} и H_{hom} – энтальпия при планарной и гомеотропной ориентации, S_{pl} и S_{hom} – энтропия при планарной и гомеотропной ориентации.

$$\Delta G = G_{pl} - G_{hom} = H_{pl} - H_{hom} - T(S_{pl} - S_{hom})$$

При $\Delta G < 0$ ориентация планарная, $\Delta G > 0$ ориентация гомеотропная. При малых значениях энергии сцепления $H_{pl} \approx H_{hom}$ характер ориентации определяется энтропией сцепления. При $S_{pl} > S_{hom}$ ориентация планарная, при $S_{pl} < S_{hom}$ ориентация гомеотропная.

При средних и больших значениях энергии сцепления характер ориентации также определяется энтропией сцепления, так как разность энергий взаимодействия ЖК с поверхностью микропор при планарной ориентации различается на величину взаимодействия только тех молекул мезогена с поверхностью, которые прилегают к внешнему краю микропоры, что составляет максимум 1/100 энергии взаимодействия молекул мезогена с поверхностью.

Кроме того, следует отметить, что если бы этот эффект был значительным, то это привело бы к гомеотропной ориентации. Число молекул, легкие оси которых составляют угол меньше 54,5° (гомеотропная ориентация), в два раза больше молекул, легкие оси которых составляют от 54,5° до 90°.

Энтропию можно определить, пользуясь решеточной моделью. Кластеры ориентируются независимо друг от друга, поэтому энтропия *S* может быть найдена по формуле Больцмана:

$$S = k \ln W$$

где *k* – постоянная Больцмана, а *W* – число микросостояний, соответствующих данному макросостоянию.

Число микросостояний при планарной ориентации равно:

$$W_{pl} = \frac{\left(vv_0^{pl}\right)!}{\left(vv_0^{pl} - N\right)!N!},$$

где N – число кластеров в моле $N=N_A/n$, n – число молекул мезогенов в кластере, v – число микропор на один моль, N_A – число Авогадро, v_0^{pl} – число ориентационных состояний в микропоре при планарной ориентации.

Число способов размещения при гомеотропной ориентации равно:

$$W_{hom} = \frac{\left(vv_0^{hom}\right)!}{\left(vv_0^{hom} - N\right)!N!}$$

где v_0^{hom} – число ориентационных состояний в микропоре при гомеотропной ориентации.

Разность значений молярной энтропии при планарной и гомеотропной ориентации равна:

$$\Delta S = S_{pl} - S_{hom} = kln \frac{(vv_0^{pl})!(vv_0^{hom} - N)!}{(vv_0^{hom})!(vv_0^{pl} - N)!}$$

Используя формулу Стирлинга и учитывая, что

$$ln(1\pm x) = \pm x - \frac{x^2}{2} \pm \pm \frac{x^3}{3},$$

получим:

$$\Delta S = k \left[N ln \frac{v_0^{pl}}{v_0^{hom}} - \frac{N^2}{2} \left(\frac{1}{v v_0^{pl}} - \frac{1}{v v_0^{hom}} \right) - \frac{N^3}{3} \left(\frac{1}{\left(v v_0^{pl}\right)^2} - \frac{1}{\left(v v_0^{hom}\right)^2} \right) \right]$$

При значениях диаметра кластеров, использованных в работе, часть разности свободной энергии сцепления, обусловленной разностью ориентационных энтропий при планарной и гомеотропной ориентации, оказывается равной $(0,3-3) \times 10^{-5} \text{ Дж/м}^2$, что находится в хорошем согласии с малыми значениями свободной энергии сцепления, которые приведены в таблице.

ЛИТЕРАТУРА

- 1. Porous and Pillar Structures Formed by Anodization for Vertical Alignment of Nematic Liquid Crystal / S. Lazarouk [et al.]; Jpn. J. Appl. Phys., 46, No.10A, 2007, p. 6889-6892.
- 2. Orientation of mesogen and hydrocarbon molecules on graphite and polyethylene crystal surfaces / A.K. Dadivanyan [et al.]; Molecular Crystals & Liquid Crystals, V. 545, Issue 1, 2011, p. 1383-1391.
- Anchoring energy of liquid crystals / A.K. Dadivanyan [et al.]; Molecular Crystals & Liquid Crystals, V. 560, Issue 1, 2012, p. 108–114.
- 4. Influence of the order parameter on the anchoring energy of liquid crystals / A. K. Dadivanyan [et al.]; Journal of Experimental and Theoretical Physics, V.115, No. 6, 2012, p. 1100-1104.

ВЛИЯНИЕ РЕЖИМОВ РЕАКТИВНОГО МАГНЕТРОННОГО НАНЕСЕНИЯ НА СТРУКТУРНЫЕ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОКРЫТИЙ Ti-AL-N

И. М. Климович, В. А. Зайков, Н. В. Семенева

Белорусский государственный университет, imklimovich@gmail.com

введение

Покрытия на основе нитридов переходных металлов часто используются в качестве защитных [1], однако, это не единственное их применение. В зависимости от структурных и электрофизических свойств такие покрытия могут быть использованы в современной электронике в качестве диффузионных барьеров [2], частей солнечных элементов и т.д. Свойства пленок, в свою очередь, зависят от технологических особенностей их формирования.

Задачей данного исследования является выявление зависимости удельного сопротивления и распределения размеров структурных элементов Ti–Al–N покрытий от температуры и потенциала смещения на подложке во время осаждения методом реактивного магнетронного распыления.

МЕТОДИКА ЭКСПЕРИМЕНТА

Нанесение покрытий Ti–Al–N методом реактивного магнетронного распыления проводилось на модернизированной установке УВН 2M, оснащенной магнетронным распылителем, ионным источником типа «Радикал», системой нагрева подложек, системой подачи смещения на подложку и системой контроля расхода газов [3], ко-