Министерство образования Республики Беларусь

Учебно-методическое объединение по естественнонаучному образованию

Регистрационный № ТД- 6- 332/тип.

Химия с основами геохимии

Типовая учебная программа для высших учебных заведений по специальностям:


1-31 02 01 ГЕОГРАФИЯ (по направлениям);

1-33 01 02 ГЕОЭКОЛОГИЯ

СОГЛАСОВАНО

Председатель учебно-методического объединения председеннонаучно-

СОГЛАСОВАНО

Начальник Управления высшего и среднего специального образования Министерства образования Республик.. Белабусь

______ Ю.И. Миксюк «20» / 09 20/0 г.

Ректор Гобударственного учреждения образовалия «Республиканский институльностией школы»

М.И. Демчук « *09* » *07* 20/0 г.

Эксперт-нормоконтролер

<u>свежие</u> Н.П. Машерова «Э» 07 2010г.

Минск 2009

СОСТАВИТЕЛИ:

Андрей Николаевич Богатиков, доцент кафедры общей химии и методики преподавания химии Белорусского государственного университета;

Игорь Евгеньевич Шиманович, профессор кафедры общей химии и методики преподавания химии Белорусского государственного университета

Рецензенты:

Кафедра химии учреждения образования «Белорусский государственный педагогический университет им. М.Танка»;

Ткачев Сергей Викторович, доцент кафедры общей химии учреждения образования «Белорусский государственный медицинский университет», кандидат химических наук.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ В КАЧЕСТВЕ ТИПОВОЙ:

Кафедрой общей химии и методики преподавания химии Белорусского государственного университета

(протокол № 5 от 69.12.2009;

Научно-методическим советом Белорусского государственного университета

(протокол № 3 от 1102 2010);

Научно-методическим советом по химии Учебно-методического объединения по естественнонаучному образованию

(протокол № 2 от 64.02 2016).

Научно-методическим советом по биоэкологии и геоэкологии Учебнометодического объединения по экологическому образованию

(протокол № 3 от 16.03. 2010).

Ответственный за выпуск: Богатиков Андрей Николаевич

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Общая химия является одной из фундаментальных научных дисциплин химического цикла. Курс химии с основами геохимии на географическом факультете является необходимой базой для успешного изучения как геохимических, так и специальных дисциплин.

Основная задача курса — изучение основополагающих разделов общей химии, формирующих фундаментальную и практическую подготовку специалистов в области географии, геоэкологии, гидрологии и геоинформационных систем. Типовая программа составлена на основе требований образовательного стандарта в соответствии с современным методологическим и научным содержанием курса общей химии, с учетом опыта его преподавания в ведущих вузах ближнего и дальнего зарубежья.

Основными целями изучения общей химии с основами геохимии являются:

- 1. Знакомство с внутренней логикой химической науки, изучение сведений об основных законах и закономерностях химии, строении вещества и природы химической связи, а также о закономерностях протекания различных химических процессов;
- 2. Изучение фактического материала по химии основных элементов и тенденций в изменении свойств простых веществ и соединений элементов по группам и периодам периодической системы;
- 3. Изучение взаимодействия различных веществ с окружающей средой, применение в практической деятельности человека, экологических проблем, связанных с их использованием.

В результате изучения дисциплины обучаемый должен:

знать:

- основные понятия, законы химических систем и процессов;
- строение атома и природу химической связи и межмолекулярного взаимодействия в веществе;
 - основы химической кинетики и термодинамики;
 - строение и свойства дисперсных систем и растворов;
- методы химической идентификации и свойства простых веществ и основных сложных соединений, а так же определение веществ;

уметь:

- применять изученные законы и понятия при характеристике составов, строения и свойств веществ, химических реакций и их практического использования в природоохранной деятельности;
 - проводить численные расчеты при решении геохимических задач;
- характеризовать химические элементы по их положению в периодической системе;
- использовать методы экспериментальных исследований и теоретические навыки в природоохранной деятельности;
- обращаться с химической посудой, лабораторным оборудованием и химическими веществами, проводить простейший химический эксперимент.

Преподавание дисциплины на практических, семинарских и лабораторных занятиях проводится по блочно-модульному принципу с выделением основных модулей:

Модуль 1. Основные понятия общей химии;

- -Основные понятия и законы;
- -Периодический закон и периодическая система;
- -Номенклатура и классы неорганических соединений.

Модуль 2. Химическая связь и строение вещества;

- -Строение атома;
- -Типы и виды химических связей;
- -Основы химической кинетики и термодинамики. Равновесие.

Модуль 3. Растворы. Химические реакции в различных условиях;

- -Состав растворов и растворимость веществ;
- -Электролитическая диссоциация;
- -Гидролиз солей;
- -Комплексные соединения.

Модуль 4. Химия элементов.

- -Окислительно-восстановительные процессы;
- -р-элементы;
- s-элементы;
- -Переходные металлы.

При чтении лекционного курса необходимо применять наглядные материалы в виде таблиц, схем, диаграмм и демонстрационных рисунков, моделей, комплектов графопроекций, видеоматериалы, а также использовать компьютерные средства обучения для демонстрации слайдов, презентаций.

Для организации самостоятельной работы студентов следует использовать современные информационные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к лабораторным занятиям, список рекомендуемой литературы и информационных ресурсов, руководство по изучению курса, тестовые задания в обучающей и контролирующей формах и др.).

Лабораторные занятия предусматривают освоение техники выполнения химического эксперимента, методов очистки веществ, методики приготовления растворов, проведения химического анализа, проведения исследовательского эксперимента и должны быть обеспечены химической посудой, реактивами, общелабораторным и специальным оборудованием, средствами наглядности.

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний в форме устного опроса, коллоквиумов, тестового компьютерного контроля по темам и разделам курса. Для общей оценки качества усвоения учебного материала рекомендуется использование рейтинговой системы.

Не все вопросы, перечисленные в программе, выносятся на лекции и практические занятия. В целях развития навыков работы с учебной и науч-

ной литературой студентам предлагается часть разделов описательного характера изучить самостоятельно.

Всего дисциплина рассчитана максимально на 220 часов, из них - 102 часа аудиторных, в том числе: 48 часов — лекции, 20 часов — практические, 34 часа — лабораторные занятия.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН

Тема	Лекции, час	Практи- ческие, час	Лабора- торные занятия, час	Всего
Теоретические	основы о	бщей хими	И	
Введение. Основные понятия и законы химии.	2 .	-	-	2
Номенклатура и основные классы неорганических веществ.	2	2	_	4
Строение атома.	2	-	_	2
Периодический закон и перио- дическая система элементов	2	_	_	2
Химическая связь и строение вещества	4	2	-	6
Химические реакции	6	2	4	12
Растворы	10	2	12	24
Окислительно- восстановительные процессы	4	2	4	10
Комплексные соединения	2	_	4	6
Обзор свойств элемент	ов и их ва	жнейших с	⊥оединений	<u> </u>
Основные принципы классифи- кации и распространенность хи- мических элементов.	2	-	-	2
Водород и р-элементы седьмой группы (галогены)	2	2	4	8
р -элементы шестой группы (халькогены)	2	2	4	- 8
р -элементы пятой группы (пниктогены)	2	2	2	6
р -элементы четвертой группы	2	2	-	4
Общий обзор металлов.	2			2
Металлы главных подгрупп		_	-	
Переходные элементы	2	2	-	4
Всего	48	20	34	102

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ОБЩЕЙ ХИМИИ

ВВЕДЕНИЕ

Предмет и задачи общей химии. Роль химии в системе естественных наук. Связь химии с другими естественными науками. Значение химии для экологии и охраны окружающей среды.

ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ

Основные понятия химии. Понятия: «атомная частица», «атом», «ион», «химический элемент», «молекула», «вещество», «формульная единица», «эквивалент», «относительная атомная масса». Химическое количество вещества. Моль. Молярная масса. Химический эквивалент вещества. Постоянная Авогадро.

Основные стехиометрические законы. Понятие о стехиометрии. Закон сохранения массы веществ в химических реакциях. Закон постоянства состава вещества. Закон эквивалентов. Газовые законы: закон объемных отношений, закон Авогадро, объединенный газовый закон, закон парциальных давлений. Современное содержание стехиометрических законов, их применимость к веществам с различной структурой.

НОМЕНКЛАТУРА И ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Принципы классификации неорганических веществ. Бинарные соединения и многоэлементные соединения. Кислоты, основания, соли. Основы современной номенклатуры неорганических веществ.

СТРОЕНИЕ АТОМА

Развитие учения о строении атома. Основные положения современной теории строения атома. Состав атомных ядер. Нуклиды и изотопы. Явление радиоактивности. Воздействие радиоактивного излучения на живую материю.

Строение электронных оболочек атомов. Двойственная природа электрона. Принцип неопределенности. Понятие об электронном облаке. Атомная орбиталь. Волновая функция. Квантовые числа. s–, p-, d-, f- электроны. Понятия: энергетический уровень и подуровень, электронная оболочка (слой). Взаимное расположение уровней и подуровней по энергии. Понятие об эффективном заряде ядра. Принцип Паули и максимальная емкость электронных оболочек. Правило Хунда. Порядок заполнения атомных орбиталей электронами. Электронные конфигурации и электроннографические формулы атомов.

ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ

Периодическая система элементов как форма отражения периодического закона. Формулировка периодического закона Д. И. Менделеева. Особенности заполнения атомных орбиталей электронами и формирование

периодов. s—, p-, d-, f—элементы, их расположение в периодической системе. Структура периодической системы и ее современные графические формы. Физический смысл атомного номера, номера периода и номера группы. Положение металлов и неметаллов в периодической системе. Особенности положения водорода, лантанидов и актинидов. Физический смысл периодического закона.

Периодичность свойств химических элементов. Основные факторы, определяющие характер изменения свойств химических элементов. Размер атома. Ковалентные, ионные и орбитальные радиусы атомов. Изменение радиусов по периодам и группам.

Ионизационный потенциал и сродство к электрону. Электроотрицательность атомов элементов. Закономерности изменения энергии (потенциала) ионизации, сродства к электрону и электроотрицательности в группах и периодах.

ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА

Основные типы химической связи. Электростатическая природа и условие образования химической связи. Основные типы химической связи: ковалентная, ионная и металлическая. Количественные характеристики химической связи: длина, энергия.

Ковалентная химическая связь. Квантово-механическая трактовка механизма образования связи между двумя атомами водорода. Основные положения метода валентных связей. Обменный и донорно-акцепторный механизмы образования ковалентной связи. Валентность атомов химических элементов. Постоянная и переменная валентность. Понятие о валентной и координационной насыщенности атома. Одинарные и кратные связи. Насыщаемость и направленность ковалентной связи. Полярная и неполярная ковалентная связь. Степень ионности связи. Эффективные заряды атомов в молекуле. Полярность и поляризуемость молекул. Степень окисления атома. Валентность и степень окисления атома элемента в соединениях. Валентные возможности атомов.

Геометрия структур с ковалентным типом связей. Понятие о стереохимии. Факторы, определяющие пространственное строение молекул. Концепция гибридизации валентных орбиталей атома. Основные типы гибридизации: sp-, sp²-, sp³-, sp³d²-.Влияние отталкивания электронных пар на пространственную конфигурацию молекул. Электронные и графические формулы молекул.

Ионная и мета. лическая связь. Ионная связь. Координационное число иона. Ионные кристаллические решетки. Кристаллы в природе.

Природа металлической связи. Строение кристаллов металлов.

Строение вещества в конденсированном состоянии. Межмолекулярное взаимодействие: ориентационное, индукционное, дисперсионное. Прочность межмолекулярного взаимодействия и агрегатное состояние веществ.

Водородная связь. Природа водородной связи. Роль водородной связи.

Кристаллическое, жидкое и аморфное состояния веществ. Атомная и молекулярная кристаллические решетки. Факторы, определяющие физические свойства атомных и молекулярных кристаллов.

ХИМИЧЕСКИЕ РЕАКЦИИ

Скорость химических реакций. Определение понятия. Факторы, влияющие на скорость химических реакций: концентрация реагентов, давление, температура, присутствие катализатора, степень измельченности, воздействие облучения. Закон действующих масс. Константа скорости и ее физический смысл. Факторы, влияющие на константу скорости химической реакции: природа реагирующих веществ, температура и присутствие катализатора. Понятие о порядке и молекулярности химической реакции.

Химическое равновесие. Обратимые и необратимые химические реакции. Состояние химического равновесия. Константа химического равновесия. Факторы, влияющие на величину константы равновесия: природа реагентов и температура. Сдвиг химического равновесия. Принцип Ле-Шателье. Влияние изменения концентрации, давления и температуры на положение химического равновесия. Значение химического равновесия для окружающей среды и геохимических систем.

Фотохимические и цепные реакции. Особенности протекания фотохимических реакций. Фотохимические процессы в живой природе.

Факторы, определяющие направление протекания химических реакций. Понятия: фаза, система, среда, макро- и микросостояния. Основные термодинамические характеристики. Внутренняя энергия системы и ее изменение в ходе химических превращений. Энтальпия. Стандартная энтальпия образования вещества. Изменение энтальпии в системах в ходе химических превращений. Тепловой эффект (энтальпия) химических реакций. Экзо- и эндотермические процессы. Понятие об энтропии. Изменение энтропии в системах в ходе фазовых превращений веществ в природе и химических процессов. Понятие об энергии Гиббса. Соотношение между величиной изменения энергии Гиббса и величинами энтальпии и энтропии реакции (основное термодинамическое соотношение). Термодинамический анализ возможности и условий протекания химических реакций. Особенности протекания химических процессов в природе.

РАСТВОРЫ

Дисперсные системы. Определение понятия «раствор». Твердые, жидкие и газообразные растворы. Грубодисперсные системы. Суспензии и эмульсии. Коллоидные и истинные растворы. Растворы природного происхождения.

Растворение как физико-химический процесс. Особые свойства воды как растворителя. Растворы газообразных, жидких и твердых веществ.

Сольваты, гидраты и кристаллогидраты. Тепловые эффекты процессов растворения. Изменение энтальпии в процессе растворения вещества. Химическая теория растворов Д. И. Менделеева. Роль растворов в жизнедеятельности организмов.

Растворимость веществ. Влияние температуры и давления на растворимость. Коэффициент растворимости. Влияние природы растворяемого вещества и растворителя на растворимость. Насыщенные, ненасыщенные и пересыщенные растворы.

Состав растворов. Определение понятия «концентрация» раствора. Способы выражения состава раствора: массовая и молярная доли растворенного вещества, молярная, эквивалентная и массовая концентрации вещества; моляльность раствора..

Электролиты и неэлектролиты. Основные положения теории электролитической диссоциации. Факторы, определяющие склонность веществ к диссоциации: полярность и энергия связи, поляризуемость молекул растворенного вещества, полярность молекул растворителя, характер взаимодействия растворенного вещества и растворителя. Сольватация (гидратация) образующихся ионов.

Сильные и слабые электролиты. Степень диссоциации электролитов. Факторы, определяющие степень диссоциации: природа растворенного вещества и растворителя, концентрация раствора, температура. Механизм диссоциации соединений с различным типом химической связи. Состояние ионов в растворах. Качественные и количественные различия характера диссоциации сильных и слабых электролитов. Константа диссоциации слабого электролита. Закон разбавления Оствальда. Представление о теории сильных электролитов. Истинная и кажущаяся степень диссоциации сильных электролитов в растворе. Эффективная концентрация ионов в растворе. Понятие об активности и коэффициенте активности.

Диссоциация электролитов. Основания, кислоты и соли с точки зрения теории электролитической диссоциации. Ступенчатая диссоциация многосновных кислот и многокислотных оснований. Диссоциация средних, кислых и основных солей. Ион гидроксония. Амфотерные электролиты. Современная трактовка амфотерности гидроксидов металлов. Изменение кислотно-основных свойств гидроксидов в периодах и группах периодической системы. Современные представления о природе кислот и оснований.

Обменные реакции в растворах электролитов. Общие условия протекания реакций обмена в растворах электролитов. Обратимость реакций ионного обмена. Смещение ионного равновесия в растворах.

Условия образования и растворения осадков. Равновесие между осадком и раствором. Произведение растворимости (константа растворимости). Условия осаждения малорастворимых электролитов. Их растворение в воде, кислотах и в растворах, содержащих одноименные ионы. Растворение и осаждение минералов в природных водах. Химизм процессов образования минералов в горных породах.

Диссоциация воды. Константа диссоциации. Ионное произведение воды. Водородный показатель (рН). Понятие об индикаторах. Значение кислотности среды для протекания геохимических процессов. Кислотность почв. Природная вода как среда миграции химических элементов.

Гидролиз солей. Механизм гидролиза. Типичные случаи гидролиза в зависимости от силы кислоты и основания, образующих соль. Влияние природы, заряда и радиуса ионов на их гидролизуемость. Ступенчатый гидролиз многозарядных ионов. Константа гидролиза. Степень гидролиза. Влияние концентрации раствора, температуры и рН среды на степень гидролиза солей. Условия подавления гидролиза. Совместный гидролиз по катиону и аниону. Процессы гидролиза солей в почвах и грунтовых водах.

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ

Окислительно-восстановительные реакции. Основные типы окислительно-восстановительных реакций: межмолекулярные, диспропорционирования, компропорционирования и внутримолекулярного окисления-восстановления. Важнейшие окислители и восстановители. Составление уравнений окислительно-восстановительных реакций. Окислительно-восстановительные процессы в живой природе.

Электрохимические процессы. Понятие о двойном электрическом слое. Скачок потенциала на границе металл—раствор. Направление движения электронов и ионов в гальваническом элементе. Э.д.с гальванического элемента. Водородный электрод. Стандартные электродные потенциалы окислительно-восстановительных систем. Уравнение Нернста (без вывода). Электрохимический ряд напряжений металлов. Определение направления протекания окислительно-восстановительных реакций. Влияние рН среды на величину окислительно-восстановительного потенциала и состав образующихся продуктов.

Окислительно-восстановительные процессы с участием электрического тока. Электролиз водных растворов и расплавов. Электролиз с инертными и активными электродами. Гальванический элемент. Химические источники тока. Химические процессы, протекающие на электродах. Получение неорганических веществ и их очистка при помощи электрического тока.

комплексные соединения

Основные положения координационной теории. Валентная и координационная насыщенность и возможность образования комплексных соединений. Строение комплексного соединения: внутренняя и внешняя сферы, комплексный ион, комплексообразователь, лиганды. Координационное число и степень окисления комплексообразователя. Заряд комплексного иона. Катионные, анионные и нейтральные комплексы. Внутрикомплексные (хелатные) соединения. Их структура. Номенклатуры комплексных соединений.

Характер химической связи в комплексных соединениях Электростатическое и донорно-акцепторное взаимодействия. Комплексообразующая способность в зависимости от положения элемента в периодической системе.

Устойчивость комплексных соединений. Первичная и вторичная диссоциация комплексных соединений. Константа нестойкости комплексов. Отличия от двойных солей. Роль процессов комплексообразования в распространенности и нахождении в природе редких и рассеянных элементов.

ОБЗОР СВОЙСТВ ЭЛЕМЕНТОВ И ИХ ВАЖНЕЙШИХ СОЕДИНЕНИЙ

ОСНОВНЫЕ ПРИНЦИПЫ КЛАССИФИКАЦИИ И РАСПРОСТРАНЕННОСТЬ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

Основные принципы классификации химических элементов, s-, p-, d-, f-элементы. Распространенность элементов в земной коре. Рассеянные и редкие элементы. Круговорот элементов в природе. Биогенные элементы.

ВОДОРОД И Р-ЭЛЕМЕНТЫ СЕДЬМОЙ ГРУППЫ

Общая характеристика водорода. Строение атома водорода. Проявляемые степени окисления. Характер связей в соединениях водорода (ионные, полярные и неполярные). Водородные связи.

Физические и химические свойства водорода. Прочность молекулы водорода. Ее термическая диссоциация. Водород как восстановитель. Атомарный водород. Взаимодействие водорода с металлами и неметаллами. Гидриды. Ион водорода и ион гидроксония. Нахождение водорода в природе. Нуклиды водорода. Способы получения водорода в лаборатории и в технике, его применение.

Галогены. Общая характеристика элементов. Строение атомов. Проявляемые степени окисления. Изменение радиуса атома, энергии ионизации, сродства к электрону и электроотрицательности галогенов. Характер химических связей с металлами и неметаллами. Устойчивость высших валентных состояний галогенов. Особенности фтора.

Свойства простых веществ галогенов. Характер химической связи в молекулах галогенов. Их физические свойства: агрегатное состояние, температура кипения и плавления, растворимость в воде и органических растворителях. Изменение окислительной активности галогенов в группе, их отношение к воде, щелочам, металлам и неметаллам; продукты взаимодействия галогенов с водой и щелочью на холоде и при нагревании, реакции диспропорционирования; особенности химии фтора. Природные соединения галогенов и особенности их концентрирования в природе. Применение галогенов. Токсичность галогенов и меры предосторожности при работе с ними.

Галогеноводороды. Физические и химические свойства. Агрегатное состояние. Характер изменения температур кипения и плавления в ряду фтороводород – иодоводород. Термическая устойчивость, реакционная способность, кислотные свойства, восстановительная активность, растворимость в

воде. Общие принципы получения галогеноводородов. Соляная кислота. Физические, химические свойства и способы получения. Применение. Роль соляной кислоты и хлоридов в живых организмах.

Кислородсодержащие соединения галогенов. Кислородные кислоты хлора. Изменение устойчивости, окислительных и кислотных свойств в ряду HClO–HClO₄. Получение этих кислот и их солей. Применение. Хлорная известь. Бертолетова соль. Перхлораты. Кислородосодержащие кислоты брома и иода. Их соли. Минералы, содержащие галогены.

Р-ЭЛЕМЕНТЫ ШЕСТОЙ ГРУППЫ (ХАЛЬКОГЕНЫ)

Общая характеристика элементов. Строение атомов. Проявляемые степени окисления. Изменение радиуса атома, энергии ионизации, сродства к электрону и электроотрицательности в ряду кислород—полоний. Особенности кислорода.

Физические свойства простых веществ. Аллотропные модификации кислорода. Химическая связь в молекуле кислорода. Аллотропия и изоморфизм серы. Закономерности изменения температур кипения и плавления простых веществ в ряду кислород—полоний.

Химические свойства простых веществ. Прочность связи в молекулах. Их реакционная способность: взаимодействие с металлами и неметаллами, водой, кислотами и щелочами. Сравнительная активность молекулярного и атомарного кислорода. Значение фотохимической реакции образования озона в верхних слоях атмосферы для сохранения жизни на земле. Природные соединения халькогенов. Общие принципы их получения и применения.

Соединения кислорода с водородом. Вода. Строение молекулы. Структура воды и льда при разных температурах. Физические и химические свойства воды. Химически связанная вода. Клатраты. Вода как растворитель. Вода в природе и ее роль в жизнедеятельности организмов.

Пероксид водорода. Строение молекулы. Физические и химические свойства. Окислительно-восстановительные свойства. Ферментативное разложение пероксида водорода. Применение пероксидов.

Халькогениды. Кислые и средние халькогениды. Растворимость и гидролиз сульфидов металлов. Общие принципы их получения, применение. Природные минералы, содержащие сульфиды металлов и их переработка. Полисульфиды.

Оксиды халькогенов. Диоксиды и триоксиды элементов. Молекулярное и полимерное состояние оксидов. Физические и химические свойства. Отношение к воде, щелочам, кислотам. Окислительно-восстановительные свойства. Принципы получения, применение.

Кислородсодержащие кислоты и их соли. Серная, селеновая и теллуровая кислоты. Строение молекул и анионов кислот. Физические и химические свойства. Свойства разбавленной и концентрированной серной кислоты. Состав продуктов ее взаимодействия с металлами и неметаллами. Промышленные способы получения серной кислоты. Олеум. Применение серной

кислоты. Сульфаты и гидросульфаты. Купоросы и квасцы. Возможности нахождения в природе. Их применение.

Сернистая, селенистая и теллуристая кислоты. Строение молекул и анионов кислот. Физические и химические свойства. Их соли. Применение.

Биологическая роль и химические основы применения серы, селена и их соединений. Загрязнение биосферы соединениями серы.

Р-ЭЛЕМЕНТЫ ПЯТОЙ ГРУППЫ (ПНИКТОГЕНЫ)

Общая характеристика элементов. Строение атомов. Проявляемые степени окисления. Изменение атомных радиусов, энергии ионизации, сродства к электрону и электроотрицательности в ряду азот—висмут. Характер химических связей с металлами и неметаллами. Особенности азота.

Свойства простых веществ. Характер химической связи в молекулах простых веществ. Строение молекулы азота. Аллотропия фосфора: белый, красный и черный фосфор. Физические свойства простых веществ. Прочность связи в молекулах простых веществ и их реакционная способность. Химические свойства. Общие принципы получения простых веществ и их применение. Круговорот азота и фосфора в природе.

Гидриды типа ЭН₃. Строение молекул. Физические свойства гидридов. Общие принципы получения гидридов. Их практическое использование.

Аммиак. Физические и химические свойства. Получение аммиака. Условия протекания реакции синтеза аммиака. Процессы окисления аммиака. Соли аммония, их термическая устойчивость. Аммиакаты. Продукты замещения водорода в аммиаке. Гидроксиламин. Пептидная связь в белках.

Кислородсодержащие соединения азота. Оксиды азота. Строение молекул и характер химических связей в них. Оксида азота(II): химические свойства и получение. Получения остальных оксидов азота. Физические и химические свойства. Взаимодействие с водой, щелочами. Окислительновосстановительные свойства. Применение. Радикалы оксидов азота и их влияние на состояние озонового слоя земли, химизм процесса разрушения озонового слоя.

Азотная кислота и азотистая кислота и их соли. Строение молекул и ионов. Физические и химические свойства концентрированной и разбавленной азотной кислоты. Состав продуктов ее взаимодействия с металлами и неметаллами. Царская водка. Нитраты. Их термическая устойчивость. Применение нитратов и нитритов. Азотные удобрения.

Кислородсодержащие соединения фосфора. Оксиды фосфора(III) и (V). Полимерное строение молекул, характер связей в них. Физические и химические свойства. Взаимодействие с водой, щелочами. Принципы получения. Применение.

Кислородсодержащие кислоты фосфора и их соли. Фосфорная, фосфористая и фосфорноватистая кислоты. Строение молекул. Окислительновосстановительные свойства. Поликонденсация ортофосфорной кислоты.

Природные фосфаты. Фосфорные удобрения. Сложные минеральные удобрения. Понятие о микроудобрениях. Существование фосфатов в природе.

Р-ЭЛЕМЕНТЫ ЧЕТВЕРТОЙ ГРУППЫ

Общая характеристика элементов. Строение атомов. Проявляемые степени окисления. Изменение атомных радиусов, энергии ионизации, сродства к электрону и электроотрицательности в ряду углерод—свинец. Характер химических связей с металлами и неметаллами. Способность углерода к образованию гомоатомных цепей Э—Э и кратных связей. Гетероцепи Si—O—Si.

Простые вещества. Строение и свойства аллотропных модификаций углерода. Строение и физические свойства кремния, германия, олова и свинца. Реакционная способность простых веществ.

Гидриды типа ЭН₄. Строение молекул. Физические и химические свойства. Изменение устойчивости и реакционной способности гидридов в ряду CH₄–PbH₄.

Кислородсодержащие соединения углерода. Оксиды углерода Особенности строения молекул. Физические и химические свойства. Токсичность оксида углерода(II). Роль оксида углерода(IV) в процессах жизнедеятельности. Парниковый эффект.

Угольная кислота и её соли. Строение молекулы угольной кислоты и карбонат-иона. Равновесия в водных растворах оксида углерода(IV). Особенности диссоциации угольной кислоты. Карбонаты и гидрокарбонаты. Термическая устойчивость карбонатов. Временная жесткость воды и способы ее устранения. Получение и применение карбонатов. Карбонатное равновесие в природе. Минералы на основе карбонатов.

Кислородсодержащие соединения кремния. Оксид кремния(IV). Его полимерное строение. Особенность силоксановой связи Si–O–Si. Физические и химические свойства диоксида кремния. Применение кремнийсодержащих полимеров.

Кремниевые кислоты и их соли. Особенности строения молекул. Природные силикаты. Алюмосиликаты. Искусственные силикаты. Стекло. Керамика. Цемент.

ОБЩИЙ ОБЗОР МЕТАЛЛОВ.

Общая характеристика металлов. Положение в периодической системе. Особенности строения атомов. Кристаллическая структура металлов. Особенности металлической связи. Проводники, полупроводники и диэлектрики. Общая характеристика валентных состояний металлов А и В групп. Закономерности изменения свойств гидроксидов металлов в периодах и группах периодической системы. Природные соединения металлов. Руды. Принципы их обогащения. Общие методы получения металлов и их очистки. Сплавы металлов.

МЕТАЛЛЫ ГЛАВНЫХ ПОДГРУПП

Щелочные и щелочно-земельные металлы. Алюминий. Общая характеристика. Строение атомов. Характер связи в соединениях. Проявляемые степени окисления. Физические и химические свойства простых веществ. Положение в электрохимическом ряду напряжений металлов. Взаимодействие с водой и неметаллами. Общая характеристика оксидов, пероксидов, гидроксидов и солей. Их получение, применение. Амфотерность алюминия. Алюминаты. Гидролиз солей алюминия. Получение алюминия и его соединений. Нахождение в природе. Калийные удобрения.

ПЕРЕХОДНЫЕ ЭЛЕМЕНТЫ

Общая характеристика *d*-элементов. Строение атомов. Проявляемые степени окисления. Изменение атомных радиусов, энергии ионизации и сродства к электрону в периодах и группах. Характерные типы связи в соединениях. Физические и химические свойства простых веществ. Закономерности в изменении свойств простых веществ и соединений переходных элементов в периодах и группах. Способность к комплексообразованию. Особенности химии *d*-элементов в сравнении с химией *s*— и *p*—элементов.

ЛИТЕРАТУРА

Основная

- 1. Шиманович И.Е., Хвалюк В.Н., Рагойша А.А., Красицкий В.А., Богатиков А.Н. Руководство к изучению курса "Неорганическая химия". Мн.: РИВШ, 2010.
- 2. *Шиманович И. Е.*, *Павлович М. Л.*, *Тикавый В. Ф.*, *Малашко П. М.* Общая химия в формулах, определениях, схемах. Мн.: Университетское, 1996.
- 3. Глинка Н. Л. Общая химия. Л.: Химия, 1983-1985, 2002, 2010.
- 4. *Суворов А.В.*, *Никольский А.Б.* Общая химии. СПб.: Химия. 1994, 2002.
- 5. Сборник задач, вопросов и упражнений по общей и неорганической химии / Под ред. И.Е. Шимановича. Мн.: БГУ, 2002, 2010.

Дополнительная

- 1. *Князев Д. А., Смарыгин С. Н.* Неорганическая химия. М.: Высшая школа, 1990, 2010.
- 2. Вадковская И. К., Лукашев К. И. Химические элементы и жизнь в биосфере. Мн.: БГУ, 1981.
- 3. Мычко Д.И. Основы геохимии. Неорганическая геохимия. Мн.: БГУ, 2004.