ЛИТЕРАТУРА

- 1. Seyidov M.H. [et al.] Identification of Intrinsic Deep Level Defects Responsible for Electret Behavior in TIGaSe₂ Layered Semiconductor. // Physica B, 2016. V. 483. P. 82.
- 2. Одринский А.П. Анализ релаксации фототока полуизолирующего GaAs в области температур 150–200 К. // ФТП. 2015. Т. 49, С. 294.
- Белинчер В.И., Стурман Б.И. Фотогальванический эффект в средах без центра симметрии. // УФН. 1980. Т. 130. С. 415.
- Qasrawi A.F., Gasanly N.M. Electrical conductivity and Hall mobility in p-type TlGaSe₂ crystals. // Material Research Bulletin. 2004. V. 39. P. 1353.

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛИКРИСТАЛЛИЧЕСКИХ СЛОЕВ Ge+Sn ПОСЛЕ ОБРАБОТКИ В ВОДОРОДНОЙ ПЛАЗМЕ

С. Л. Прокопьев, И. А. Сульжич, А. Г. Новиков, П. И. Гайдук

Белорусский государственный университет, prokopyev@bsu.by

Холловскими методами измерений исследовались структуры $p^+Ge/Ge_{99}Sn_{01}/n^+Si$ на подложках Si/SiO₂ после обработки в водородной плазме. Проведены измерения подвижности и концентрации носителей заряда в указанных структурах в зависимости от режимов термообработки, а также на различной глубине структур при послойном стравливании.

введение

Хорошо известно, что полупроводниковые материалы после обработки в водородной плазме приобретают новые полезные электрофизические свойства [1]. В [2–3] на примере слоев Ge+Sn продемонстрирована возможность повышения концентрации и подвижности носителей заряда вплоть до величин, характерных для монокристаллического кремния. Мы полагаем, что модифицированные водородом слои Ge+Sn могут быть перспективны, например, для создания новых типов фотодетекторов и солнечных элементов на основе как моно- так и поликристаллических слоев. В данной работе исследовались электрофизические свойства структур со слоями Ge+Sn с низким содержанием олова, подвергнутые водородной и термической обработке.

МЕТОДИКА ЭКСПЕРИМЕНТА

Для выполнения исследований на подложке Si/SiO₂ на установке молекулярнолучевой эпитаксии формировалась структура p⁺Ge/Ge₉₉Sn₀₁/n⁺Si. Сначала выращивался слой Ge p-типа (100 нм), затем – слой Ge₉₉Sn₀₁ (500 нм). Верхним слоем являлся n⁺Si (100 нм). Предварительно все образцы, подготовленные к дальнейшим исследованиям, отжигались при температуре 450 °C или 500 °C в течение 15–30 минут на воздухе или в азоте. Химическое травление для очистки поверхности структуры и исследования ее свойств по глубине проводилось, соответственно, в водном растворе (HF 5%) и смеси концентрированных кислот (HF:HNO₃ = 1:15).

Водородная обработка структур проводилась при температуре 250 °C в плазме тлеющего разряда. Параметры разряда равнялись: напряжение разряда U_p =500 B, ток разряда I_p =1 мА, плотность тока J_p =80 мкА/см². Длительность обработки – 25 мин.

Термообработка структур проводилась в печи типа СУОЛ при температурах 550–650 °С в течение 15 мин в азоте.

Подвижность носителей и концентрацию электрически активной примеси получали холловскими методами измерений на структурах Ван дер Пау. Измерения проводились при индукции магнитного поля $B = 1,09 \pm 0,02$ л.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1, 2 показаны зависимости слоевой подвижности носителей заряда μ_s от температуры отжига $T_{\text{отж}}$ и от времени травления t в растворе HF + HNO₃(1:15) после водородной обработки.

Рисунок 1. – Зависимость подвижности носителей заряда от температуры отжига после водородной обработки

Рисунок 2. – Зависимость подвижности носителей заряда от времени травления в растворе HF + HNO₃(1:15) после водородной обработки

В структурах, которые не подвергались химическому травлению (исходные структуры), $\mu_s = 0,022 \text{ m}^2/\text{Bc}$ ($T_{\text{отж.}} = 550 \text{ °C}$), 0,018 м²/Bc ($T_{\text{отж.}} = 600 \text{ °C}$) и 0,021 м²/Bc ($T_{\text{отж.}} = 650 \text{ °C}$) (рис. 1). После травления структур в течение 3 с, μ_s , = 0,019 м²/Bc ($T_{\text{отж.}} = 550 \text{ °C}$), 0,018 м²/Bc ($T_{\text{отж.}} = 650 \text{ °C}$). После травления структуры в течение 6 с следует отметить $\mu_s = 0,021 \text{ m}^2/\text{Bc}$ ($T_{\text{отж.}} = 650 \text{ °C}$). После травления структуры в течение 6 с следует отметить $\mu_s = 0,021 \text{ m}^2/\text{Bc}$ ($T_{\text{отж.}} = 650 \text{ °C}$). Величина μ_s при 550 °C и 600 °C практически не отличается от таковой для исходной структуры. На зависимости μ_s (t) (рис. 2) видно, что минимальная величина $\mu_s = 0,016-0,0195 \text{ m}^2/\text{Bc}$ наблюдается после травления структуры в течение 3 с.

На рис. 3, 4 показаны зависимости слоевой концентрации носителей заряда N_s от температуры отжига и от времени травления в растворе HF+HNO₃(1:15) после водородной обработки.

Из рис. 3 следует, что в исходной структуре $N_s = 9,5 \cdot 10^{17} \text{ m}^{-2}$ ($T_{\text{отж}} = 550 \,^{\circ}\text{C}$), $14 \cdot 10^{17} \text{ m}^{-2}$ ($T_{\text{отж}} = 550 \,^{\circ}\text{C}$) и $7 \cdot 10^{17} \text{ m}^{-2}$ ($T_{\text{отж}} = 550 \,^{\circ}\text{C}$). Следует отметить величину N_s после травления структуры в течение 3 с, равную $9 \cdot 10^{17} \,^{-2}$. Из рис. 4 следует, что при любой длительности травления структуры по глубине максимальное значение Ns получено для структур после термообработки при 600 °C.

В свою очередь, величина объемной концентрации носителей заряда N_v монотонно растет с ростом времени травления в диапазоне температур 550–650 °C (для каждой температуры отжига) от $1 \cdot 10^{18}$ см⁻³ (в исходной структуре, $T_{\text{отж}} = 650$ °C) до $5 \cdot 10^{18}$ (в структуре после травления в течение 6 с и $T_{\text{отж}} = 600$ °C).

Проведено сравнение результатов измерений μ_s , N_s и N_v в структурах после водородной обработки с μ_s , N_s для серии структур без водородной обработки. Из сравнения следует, что μ_s в структурах после водородной обработки увеличивается в среднем в 1,25 раза. С другой стороны, величина N_s в структурах после водородной обработки уменьшается в среднем в 1,8 раза.

Таким образом, обнаружен сложный характер зависимости электрофизических параметров от времени травления и температуры отжига.

Таким образом, в настоящей работе продемонстрирована возможность изменения электрофизических свойств поликристаллических слоев Ge+Sn путем обработки в водородной плазме. Водородная обработка при напряжении разряда U_p =500 B, токе разряда I_p =1 мА и плотности тока Jp=80 мкА/см2 в течение 25 мин при 250 °C, а также термообработка при 550–650 °C приводили к увеличению µs в среднем в 1,25 раз, и уменьшению N_s в среднем в 1,8 раз по сравнению со структурой после выращивания.

Работа выполнена при частичной поддержке БРФФИ (договор Т16Р-167) и ГПНИ «Фотоника, опто- и микроэлектроника» (задание 3.2.03.1).

ЛИТЕРАТУРА

- Hydrogen in Semiconductors. Ed. By J. I. Pankove, N.M. Johnson. San Diego: Academic Press, Inc, 1991. – 631 p.
- N. Uchida, et al. Carrier and heat transport properties of polycrystalline GeSn films on SiO₂ // Appl. Phys. Lett. –2015. – 107. – P. 232105.
- W. Takeuchi, et al. High hole mobility tin-doped polycrystalline germanium layers formed on insulating substrates by low-temperature solid-phase crystallization // Appl. Phys. Lett – 2015. – 107. – P. 022103.