СТРУКТУРА МЕЗОПОРИСТОГО КРЕМНИЯ И ЕЕ ГЕОМЕТРИЧЕСКАЯ ХАРАКТЕРИЗАЦИЯ

С. А. Завацкий, В. П. Бондаренко

Белорусский государственный университет информатики и радиоэлектронники, sergeyzavatski13@gmail.com

Цель работы заключалась в выяснении и демонстрации различий структуры пористого кремния (ПК) по толщине в зависимости от режимов его изготовления. В ходе работы проведена статистическая обработка растровых изображений в глубине и на поверхности ПК. Показано, что структура ПК в глубине слоя отлична от структуры на поверхности.

введение

К настоящему времени выполнено большое количество работ, посвященных формированию пористого кремния (ПК) методом электрохимического анодирования и изучению физико-химических свойств этого материала. Эти работы были начаты еще в 70-х годах прошлого столетия и имели своей целью использование ПК для активации некоторых технологических процессов кремниевой микроэлектроники [1]. Исследования ПК активизировались после обнаружения люминесценции ПК в видимой области спектра [2]. В ПК в промежутках между порами кремний сохраняет свою кристаллическую структуру. Установлено, что в зависимости от режимов анодирования монокристаллического кремния с различным уровнем легирования и типом проводимости можно получать семейство ПК с широким диапазоном вариации размеров каналов пор.

Практически все применения ПК в различных областях науки и техники требуют наличия достоверной информации о структуре и пористости материала и их зависимости от режимов электрохимического анодирования.

Данная работа направлена на выяснение различий структуры ПК по толщине в зависимости от режимов его изготовления.

МЕТОДИКА ЭКСПЕРИМЕНТА

В ходе работы проводились эксперименты с образцами ПК, технологический процесс изготовления которых заключался в следующем. Образцы кремниевых пластин, легированных сурьмой, с удельным сопротивлением $\rho = 0.01$ Ом·см и кристаллографической ориентацией (100) помещались в ячейку для электрохимического анодирования горизонтального типа с диаметром зоны анодирования 1,9 см. Для анодирования использовался водно-спиртовый раствор, содержащий 1 объемную часть 48% фтористоводородной кислоты (*HF*), 3 части деионизованной воды и 1 часть изопропилового спирта. Анодирования подбиралось в диапазоне плотностей тока *j* от 20 до 100 мА/см². Время анодирования подбиралось таким образом, чтобы толщина слоя ПК была равна 10 мкм. Условия освещения - включена лампа подсвет-ки в зоне проведения эксперимента.

Диаметр пор и плотность пор определяли с помощью программы статистического графического анализа растровых изображений по результатам изучения поверхности слоев ПК и на глубине порядка 3 мкм методом сканирующей электронной микро-

скопии (СЭМ) на микроскопе *Hitachi*—S4800. Удаление поверхностного слоя ПК осуществлялось методом химического замещения в растворе, содержащем 1,245 г $CuSO_4 \cdot 5H_2O$, 200 мл деионизованной воды и 1 мл 48% *HF*. Образцы выдерживались в растворе в течение трех минут, затем промывались и помещались в водный раствор азотной кислоты, содержащий 1 объемную часть азотной кислоты *HNO*₃ и 4 объемных части деионизованной воды для полного удаления плёнки меди с двух сторон пластины кремния. Затем образцы снова промывали и высушивали.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

На микрофотографиях (рис. 1) видны входные отверстия каналов пор на поверхности ПК. Отверстия каналов пор имеют округлую форму. Характерен разброс диаметров каналов пор. При этом заметна разница в размерах и количестве пор между образцами до и после снятия поверхностного слоя ПК, т.е. на поверхности слоя ПК диаметр каналов пор меньше, чем в глубине пор.

Рисунок 1. – Электронные микрофотографии поверхности ПК после его получения при j = 80 мА/см² (*a*) и после удаления слоя толщиной 3 мкм методом химического замещения (δ)

Анализ микрофотографий с помощью программы статистического графического анализа растровых изображений *ImageJ* позволил определить площадь каждой поры, рассчитать эквивалентный диаметр d_F каждой поры и распределение пор по эквивалентным диаметрам, а также определить количество пор на 1 см² поверхности образца.

На рис. 2 *а*, *б* представлены результаты анализа микрофотографий поверхности образцов с ПК в зависимости от плотности тока анодирования до и после удаления поверхностного слоя ПК.

Рисунок 2. – Зависимости плотности пор и среднего эквивалентного диаметра от плотности тока на поверхности ПК (*a*) и на глубине 3 мкм (*б*)

Из рис. 2 *а* видно, что d_F образцов с ПК увеличивается от 25 нм до 45 нм с увеличением *j* во всем рассматриваемом диапазоне. При этом зависимость плотности пор имеет другой характер. Ее значения уменьшаются в диапазоне *j* от 20 до 80 мА/см² от 11,4 до $5 \cdot 10^{10}$ шт/см, после чего снова начинает возрастать. Из рис. 2 *б* видно, что зависимость d_F образцов от *j* имеет схожий вид, увеличиваясь в диапазоне *j* от 20 до 80 мА/см². Такая же ситуация имеет место и для зависимости плотности пор на рис. 2 *б*. Ее вид зависимости пропорционален зависимости плотности пор на рис. 2 *a* и уменьшается в диапазоне *j* от 20 до 80 мА/см².

ЗАКЛЮЧЕНИЕ

В ходе работы изготовлены образцы ПК при различных режимах электрохимического анодирования в электролите на основе водно-спиртового раствора плавиковой кислоты. Проведена статистическая обработка растровых снимков ПК на поверхности и глубине 3 мкм. Показано, что структура ПК в глубине слоя отлична от структуры на поверхности. Полученные результаты могут быть полезными при исследовании механизмов и кинетики зарождения пор в кремнии [3]. Особый интерес представляет использование полученных результатов при электрохимическом осаждении металлов и полупроводников в мезопористый кремний [4, 5].

ЛИТЕРАТУРА

- 1. Лабунов В. А. Пористый кремний в полупроводниковой электронике / В.А. Лабунов, В.П. Бондаренко, В.Е. Борисенко Зарубежная электронная техника. 1978. N 15.– с. 3–47.
- Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers / L. T. Canham // Appl. Phys. Lett. —1990.V. 57. – P. 1046—1048.
- 3. Формирование и структура мезопористого кремния / Н.И. Каргин [и др.]. // Материалы электронной техники. 2013. №4. с. 4—8
- Влияние приповерхностного слоя на электрохимическое осаждение металлов и полупроводников в мезопористый кремний / Е.Б. Чубенко [и др.] // Физика и техника полупроводников. – 2016. – том 50, вып. 3. – с. 377–381.
- Наноэлектроника: теория и практика учебник / В. Е. Борисенко [и др.] 2-е изд., перераб. и доп. – М.: БИНОМ. Лаборатория знаний, 2013. – 366 с.: ил. – (Учебник для высшей школы).

ВЛИЯНИЕ РЕЖИМОВ МАГНЕТРОННОГО РАСПЫЛЕНИЯ НА ОПТИЧЕСКИЕ СВОЙСТВА ТІАІN ПОКРЫТИЙ ДЛЯ СЕЛЕКТИВНЫХ СОЛНЕЧНЫХ ПОГЛОТИТЕЛЕЙ

В. А. Зайков, И. М. Климович, Ф. Ф. Комаров, О. В. Королик, О. Р. Людчик

Белорусский государственный университет, valery48@tut.by

введение

Многослойные селективные поглощающие покрытия, используемые в тепловых коллекторах солнечной энергии, должны эффективно поглощать до 92 % солнечного света в оптическом диапазоне длин волн от 300 до 2500 нм. Излучение в ИК-диапазоне ($\lambda > 2500$ нм) должно быть намного меньше, чем излучение черного тела, нагретого до такой же температуры [1]. Эффективность тепловых коллекторов солнечной энергии в сильной степени зависит от рабочей температуры теплоприем-