One of the most important component of child mortality is infant mortality. In several years, the infant mortality rate exceeded 50%. Generally, during the period studied the infant mortality decreased from 641.4/0000 in 2005 to 345.6/0000 in 2014 or by a factor of 1.9. The main reasons of infant mortality were certain conditions originating in the perinatal period and birth defects. Their aggregated proportion constituted 64.86%. 8.9% cases of infant mortality were caused by the accidents, 6.4% – by infectious diseases, respiratory diseases and nervous system diseases accounted for 5.8% and 4.4% correspondingly.

Conclusion. During the period studied child mortality in the Republic of Belarus decreased by a factor of 1.5, including the infant mortality that decreased by a factor of 1.9. This tendency points to effectiveness of medical assistance provided for children and adolescents and life quality improvement of the population in general.

Murina K., Lemiiasheuski V., Klimovich O.

International Sakharov Environmental Institute of Belarusian State University, Minsk, Republic of Belarus

THE ROLE OF ESTABLISHING THE MAXIMUM ADMISSIBLE CONCENTRATION OF MEDICINAL SUBSTANCES AT PHARMACEUTICAL ENTERPRISES

With the growth of drug production volume, hygienists and occupational therapists are getting into the following tasks:

1. Severization of quality requirements applied in industrial environment at chemico-pharmaceutical enterprises;
2. Implementation of hygiene standards to ensure healthy and safe working conditions at the production of potentially dangerous chemicals and compounds.

Specifics of drug production is largely determined by its preproducts and end products. Preproducts are substances obtained at particular production stages. End products are medicinal drugs by itself.

In the working area concentrations of these compounds may exceed the permitted levels. It is especially true for operations related to loss of containment, loading and unloading of bulk solids, technological sample selection.

Inhalational penetration of toxicants is of greater danger, as most of the air cells surface is actively washed by blood, which facilitates rapid absorption of toxicants and their conveying to the vital centers. Consequently, in the chemical and pharmaceutical industry the most common occupational diseases are:

- rinolarongofarengit (a disease of the mucous membranes of the nose, throat, larynx),
- erosion (ulcer) and perforation of the nasal septum,
- tracheitis,
• bronchitis,
• pulmonary fibrosis (degeneration of lung tissue).

Due to technological, economic and some other difficulties, it is not possible to completely eliminate adverse factors from the production environment. Introduction of maximum permissible concentration (MPC) would limit the adverse effects chemical compounds make on human and prevent occupational diseases. The chemicals that cause adverse health effect may be present in the working area in the form of gases, aerosols and vapor mixture.

Established MPC are concentrations, which effect cannot cause diseases or abnormalities in health status detected by modern methods of research; it concerns not only the entire length of service, but also the late periods of life of present and future generations.

Justification for MPC level and other preventive measures requires the following information to be obtained:
1. Substance production and use condition;
2. Data on the chemical structure, physical and chemical properties;
3. Substance toxicity and its impact after a single exposure on the body;
4. Substance cumulative capacity after repeated exposure on the body;
5. Study of local irritant and skin-resorptive effects of substance;
6. Threshold of harmful effect while chronic substance admission into the body.

Thus, compliance with hygiene standards will provide health safety of workers with no risk.

Nabokov A., Ruta-Zhukovskaya E., Bokut S.
National Anti-Doping Laboratory, Lesnoy, Republic of Belarus;
International Sakharov Environmental Institute of Belarusian State University, Minsk, Republic of Belarus

MASS SPECTROMETRY ANALYSIS OF MINOR GLYCOHEMOGLOBIN A\textsubscript{1C}

Minor form of human hemoglobin A\textsubscript{1C} is a product of post-translational modification of hemoglobin A\textsubscript{1} glucose by α-β chains, as well as ε-amino groups of amino acid side chains. This modification can be considered as a marker protein of one of the most serious diseases, which over the years has grown into an epidemic, namely diabetes. Currently HbA\textsubscript{1C} is used as a common indicator to assess the condition and the degree of compensation of carbohydrate metabolism as it allows to track blood glucose levels over a wide time range.

Despite the fact that HbA\textsubscript{1C} is used as a protein marker of diabetes, this minor form of itself is an important object of study. For example, it is shown that carbohydrate modification HbA\textsubscript{1} alters its ability to bind allosteric effectors, and has a significant impact on the transportation function. As shown HbA\textsubscript{1C} that can partic-