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1. Abstract

A direct exact relaxation algorithm is considered for a network problem of the fractional programming. The algorithm
includes the proof of an optimization criterion, the development of a formula for the increment of the objective function and
building of an usable direction of flow changing.

Linear-fractional problem, network, direction, optimization, flow.

2. A homographic network problem

Consider the extreme problem of the fractional programming in a network form:
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where S = {I,U} is a finite oriented connected network without multiple arcs and loops with node set 7, 1] =m,
and arc set U, lU‘ =n, m<n; B,y are scalars, x = (x,.j,(f,j)e U) is a flow of the problem, xe X (restrictions (2)
and (3) are fulfilled on the vector x), X is a convex set of flows (plans); I;v)={j: (j)eul
Iz (U)z {j : (j,i)e U }. Restrictions (2) are primal restrictions; (3) are direct restrictions.

We suppose that the denominator q(x)= Zqijxij +7 of the objective function doesn’t change the sign on
(i.jEU
the plan set. Therefore, without a restriction of the generality, we can suppose that the denominator q(x)>0,
_-plx)
~q(x)

The arc set U, of the covering tree of the source network S is the support of the network [5]. Let

Vx€ X , otherwise we can consider the following problem: f (\)

Uy =U\U, be a nonsupport arc set of network § . A pair {x,UR} consisting of any given flow x and any given
support U, is referred to as a support flow. Let’s name the support flow {x,U R} non-degenerate if it is non-

degenerate on the direct restrictions d.; <x, < d,; . (r', Jeu,.

3. Formula for the increment of the objective function

Let {x,UR} is a support flow of the problem (1) — (3). Designate through X =x+ Ax some other flow of
the problem (1) — (3), where Ax is the flow increment. It is known [4, 6] that support (dependent) components of a
vector x = (x,.j,(i,j)e U) can be represented through the nonsupport components > - (r,p)e U, in the following
way:
x; = mesign(i,j)m'p) + stsign(i,j)“ , GJ)eU,. 4)
(rpEUN sel\root

.)1.(r'p)

where root is any node i€ [; sign(i,j is the sign of arc (i,j) in the circle L(T,p) caused by an arc

(‘t‘,p)e U, (acircle direction is detected by an arc (‘r,p)); sign(i,j)"" is the sign of arc (i,j) in the single chain

Ls of the covering tree (this chain connects any node s to the node root ).
The flow increment Ax satisfies a homogeneous system corresponding to the primary restrictions of
problem (2):
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On account of (4) and (5) the increment Ax on the support arcs (Jf,j)e U, is calculated in the following way:
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Let’s calculate the objective function increment Af :

Af = f(&)- F(x)= flx+ Ax)- f(x)=
plx+ax) plx) _ plx+Ax)g(x)- plrla(x+Ax)
qlx+Ax)  qlx) q(x)g(x + Ax)
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As far as Zqﬁxﬁ +y = q(x)> 0, Vxe X we can divide the numerator and the denominator by q(x). As a result:
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Let’s transform the numerator and the denominator of the objective function on the ground of analytical
expression of arc flows x;;, {/ (', ')e U, (4):
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Let’s transform the formula for the increment of the objective function. For this purpose we shall consider
separately the sums standing in numerator and denominator. Using formula (6), we have:
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In view of the received formulas, the increment of the objective function will be transformed as follows:
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where AT#) = A©#) _ £(x)A™) | (z,p)e U, is an evaluation vector.

4. An allowable direction of flow changing

The vector I=I(U )e R" is called an allowable direction for a flow x, if 36° >0 such that all vectors

x(9)= X +6l 0<6<6° are flows of the problem, i.e. the following relations are carried out:

x, (0 Ex,, 0)=b.ic,(Ax()=b) (™
el (u) jel; (v)
d*iinU(9)<dU,( JeU (d.<x(@)<d"). voel0,6°), 8)
Le=10)=0, (. D U). b =1UL)= 0.6 e U ©)
It follows from relations (7) that the allowable direction [ =I(U) satisfies the system: th‘j e 21 =0,
W) el W)
i€ I and, hence [4,6], I, = Y1 sign(i,j ) G j)eU,.

(rpEUN
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Let's calculate the derivative of the objective function on an allowable direction:
2[1 ATP)
af('r) = (I'p)EUNp . (10)
al q(x)

5. Optimality criterion

Theorem (optimality criterion): For optimality of the support flow {x,U R} it is enough, and in case of non-
degeneracy it is also necessary, that the following conditions are carried out:
A" >0, under x,, =d;,,
A" <0, under x,, =d.,, . (11
?)=0, under d.,, <x, <d, , (t.p)eU,.
Proof. Sufficiency. Suppose that relations (11) are satisfied for the support flow {x,UR}‘ We shall show
that x is the optimal flow. Let / is any allowable direction. From (8) and (11), we have that:

A" <0 and I, 20, if x, =d.,, and (12)
A" >0 and I, <0, if x, =d,,, (t.p)eU,. (13)
As by hypothesis the denominator of the objective function q(x)>0, Vxe X , then from (10), (12) and (13) it
follows that aj;(l )<0 for any allowable direction [ for the flow x and, hence, x is the optimal flow.

Necessity. Assume for the purpose of contradiction that {x,U,} is a non-degenerate optimal support flow,

for which even one condition (11) is not carried out, i.e. there is such an arc (to, Jo )e U, that:

either A™*) <0 under X, py = d;upo . (14)
or A®#) >0 under B St s (15)
or A™) 20 under g, S Tl (16)
Let's construct a special direction / = l(U) for the flow x:
l,op =sgn A | =0, (r,p)e Uy \(z,,00)
= Dhosion V) =1, sign 7Y e, e
(rpEUN

Let’s prove that the direction constructed using relations (17) is allowable. We’ll show that equality (7)
follows from (17) for V6 >0, where x; ©)=x, ; 1o, (i,j)e U . and (7) is equivalent to the of relation:
Y- Dl;=0,iel. (18)
’IFU) e (u)

Under the assumption that U =U, UU , equality (18) can be written as:

- Z’ﬁ A 21}, 0,iel. (19)

jeli (Ug) 17g) it uy)  eli
Let’s denote L, = 2[,7 - Zlﬂ s Ly = EIU = Elﬁ .
EUg)  Jeli (Ug) el Uy) kI (Uy)

Let’s transform L, using (17):

Zlu_ Zlﬂ Tofo 2518” (Fo:0) Eszgn _], (7o-p0)

jert (Ug) T(Ug) jett (Ug) jel7 (Ug)
Let ie [ \{To,po}. Substituting the direction (17) in L, yields L, =0 as L, doesn’t include component
L+, - The circle L(To,po) contains two arcs for every node i€ / \{TO, po}, let’s j, and j, are the nodes incident to
these arches. Three situations are possible:
1) (i, '), (i, i ); 2) (jl,[), (',,i); 3) (i, '), (j,,i), where incidence the mentioned arches.

) el o 3’8”(70 po)

(ro.P0)

Without restriction of a generality we suggest that szgn( i =1 for 1) and 3) cases and

sign(ji,i)' "™ = sign(z,, p, )"
1) sign(i, j, /' = -1 hence L, =1, (1+(-D)=

2) slgn(]z,l)l(°p° =-1 hence L, =lropo(_1_(—l)):

%) =1 for 2) case then:
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3)  sign(j,.i) ™ =1 hence L, =1, (1-1)=0.
Thereby, L, +L, =0, ie I\{r,.p,}.
Let's consider a case when i =7, then node p, € L (UN) and hence Ly =/ _, . When calculating L, there
may be two cases:
1) arc (cg, j,)€ Llggrpy). Ji€ 1;(U,,) then sign(z,, j, )™ = -1;
2) arc (j,,7,)e L(t,, p,). Jj € I7(Uy) then sign(j,,z, o) =1 ;
Inboth cases L, =1, , (— 1)= —I,,, - Thereby L, +L, =0.

If i =p, then node 7,€ ! (UN) and hence L, =~/ _, . When calculating L, there may be two cases too:
1) arc (po,j1 )E L(’L’O,po), B E 1;0 (UN) then sign(po,j] )l.(fo-Po) =land L, =1, ;

2) arc (jl’po)e L(TO’pO)’ jl € I;O(UN) then Sign(jl’po)l‘(foypo) :_l and LN :[ropo(_("_l))=lropn -
Therefore, in this case L, + L, =0 too.

Thus, we have proven the relation (7).
Let's prove the validity of relation (8) for the constructed direction (17). Since the flow x is a non-

degenerate flow then d.; <x;<d;, (i.j)€U, and hence there is a small enough number 6'>Osuch that

d; < x,+0,<d;, (i, j)e U, , VO [0,6']. In view of (14) - (16) and (17) there is a small enough number §° >0
that d.,, <x,, +0l, <d,,, (c.p)eU,, VOe|0.6°]. Thus, assuming 6° =minp',6?}, we have that direction
constructed by equalities (17) satisfies relations (7) and (8) and hence it is allowable.

Therefore, according to the formula for the derivative of the objective function on allowable direction (10)

L, AP Aore) gop Alforeo)
and in view of ¢(x)>0, Vxe X , we have of (x) _ Topo _A*sgnA
q(x) q(x)

is a nonoptimal flow. This contradiction completes the proof.

A(fod"o)
= > 0. That means that x
q(x)

6. Construction of the iteration

Let relations (11) are not carried out on the support flow {x,UR} then the new support flow {x,U,} is
under construction: x =x+6l, Xx—x=Ax =0l , where 0 isa step, / is an allowable direction.

According to the principle underlying the method, it is necessary to choose direction / so that the objective
function is not decreasing on the iterations, i.e. Af = f(f)— f(x)Z 0. Therefore:

H LA
(f-P)EUV
Af = ’ >0
i Yo S A 5017
(rpEUY (r.pEUY
Thus, since the step 6 >0 and by hypothesis g(x+ Ll x)>0 direction ! must satisfy the inequality:
LA sy, (20)

(kU
Direction / =(U ), on which the condition (20) is satisfied, refers to as a direction of objective function increase.
Thus, at construction of iteration a direction ! should be both allowable, and a direction of the objective
function increase. Such direction is called usable direction.
As an usable direction / for a flow x a vector is selected, along which the derivative of the objective
function on an allowable direction reaches its maximum value under simplex normalization: .

YA 1)

(ijEUy

From condition (8) for flow ¥: d., <x, +&, =d,; (jeu, voe [0,60], we receive [; 20 if x;, =d

and I, <0 if x, =d;

ij?

%
(i. /)€ U . The maximum value of the derivative of the objective function on an allowable

direction under the normalizing condition (21)

2 lm A(T-P)

max af(x) = max (e U

o q(x)

is reached on the arc (TO, 0, )€ U, , which is found from the condition:
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= max {max AP, max - A", max

(TpEUN | xy=dey, id oy <y <tly,

A(To Po)

A(T"’)‘} . (22)

... 0
In view of (22) the components of the usable direction, which provides the maximum of derivative La(zx—)

under the normalizing condition (21), are :
l =SgnA(ru'p0)7 lrp :0’ (T7p)e UN\(T07pO)’

ToPo
3 I VA . . \l70.P0 -y 23
erpmgn(t,j)” P) =lrupos:gn(t,j)’( p) (l,j)G U,. (23)
(z.pEUy
In addition the equality is valid:

af (x) 2 l”oPoA(TD‘pO) A(To o) sgn A(fo-po)

A(To Po )

ol a) e )
As by hypothesis q(x)>0, Vxe X then iJ¥>O.

Any homographic function has the property: if along a selected direction the denominator q(x) of a
homographic function f(x) does not change the sign then the function f ().) along this direction varies
monotonically. From this property we have that along the constructed direction (23) we shall move until we reach
the border of flow set X . For this purpose let’s find the maximum permissible step 6°, at which the vector
P L {x +6°l,,,(, S U} is a flow, i.e. conditions (7) and (8) are carried out.

It follows from relations (23) that condition (7) is carried out for any 8° >0 . From (23) and (8) we have:
6° =min } where 6, ~mm{6 EUR},

ToPp ° U’ ’

7/ i
6. =—2""Y under l,>0;

O X
0. =—2— under b 203

Bl_j =co under l:‘j =0, (iaj)e URU(TO’pO)'
If 6° =6, ,, then the support will not change, i.e. Z/—R =l i §° =0,, then the support will change
(73 = (UR \(Tl.pl ))U (To,pO)'
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