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Разработана методика, которая позволяет использовать локальную 

вторичную декомпозицию в двумерной версии метода минимальных авто-

номных блоков (МАБ). Методика использована для задачи дифракции пло-

ской электромагнитной волны на периодической решетке из металлических 

полос-диэлектриков. Разработанная методика позволяет значительно 

уменьшить вычислительные ресурсы, необходимые для решения много-

масштабных проблем методом МАБ. 
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TECHNIQUE  OF  LOCAL  SECONDARY  DECOMPOSITION  

 IN  SOLVING  TWO-DIMENSIONAL  ELECTROMAGNETIC  

PROBLEMS  BY  MINIMAL  AUTONOMOUS  BLOCKS  METHOD 
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A technique which makes it possible to use local secondary decomposition in 

two-dimensional version of minimal autonomous blocks (MAB) method is developed. 

The technique is validated for the problem of a plane electromagnetic wave diffraction 

on a periodic grating made from metal-dielectric strips. Developed technique can sig-

nificantly decrease computational resources required for solving multiscale problems 

by the MAB method.  
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INTRODUCTION 

Minimal autonomous blocks method (MAB, also used acronym is MAD) is success-

fully used for solving various electromagnetic problems [1–3]. Unlike the finite element 
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method (FEM), the MAB method uses exact solution of Maxwell equations inside a mesh 

cell [2]. 

The MAB method uses rectilinear grid and well suited for solving multiscale prob-

lems due to the technique of averaged scattering matrices [3]. But if the technique is not ap-

plicable for modeled structure, then accounting of the structure’s local features will lead to 

decreasing sizes of mesh cells for entire modeling domain. 

Use of local secondary decomposition makes it possible to decrease sizes of mesh 

cells only near to the modeled structure [4]. 

LOCAL  DECOMPOSITION  IN  MAB  METHOD 

To solve problem of stitching grids with different cell sizes, we will use special 

transmission blocks, similarly to [4] (fig. 1). Every such block is connected at one side to the 

channel of block A  of the main grid, and at another side is connected to the channels of lo-

cal grid blocks iB , ki ,..,1  ( k  is ratio of blocks in grids along border between grids).For 

purposes of simplicity, it is assumed that the same medium is placed on both sides of trans-

mission blocks (otherwise it is required to consider transmission blocks between mediums 

[1]). Let us assume that two blocks of local grid are connected to each block of main grid 

(k = 2). Size Bih  of blocks iB  along border between grids is equal to half of  size Ah  of block 

A  along this border. 

 

   

a      b 

Fig. 1. Stitching of grids: a – part of total grid; b – transmission block  

with channel waves between grids 

It is required to determine transmission matrix TS  of introduced transmission block T  

between grids. Channels numbering was performed in the following way (see fig. 1): 1 is 

number of channel connected to the block A , 2 is number of channel connected to the block 

1B , 3 is number of channel connected to the block 2B . It is adopted that diagonal elements 

iiTS
,

 responsible to reflections are equal to zero (reflection phenomena will be accounted 

correctly due to appearance of reflected waves from blocks A  and iB  and propagation of 

these waves through introduced transmission block T). We also adopt that 
3,2TS =

2,3TS = 0 

(interactions between channels of blocks iB  connected to the block T  will take place only 

due to reflections from block A). 
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One can derive remaining elements of transmission matrix TS  when propagation of 

plane wave perpendicularly to the boundary between grids is considered. In this case pres-

ence of the transmission block should not influence propagation of the wave. If incident 

wave have unit amplitude at the first channel of the block T  (amplitudes of another inci-

dence waves are zeros), waves with unit amplitudes must exit from the second and third 

channels. Therefore, 1
1,


iTS , 3,2i . 

In case of incidence of waves with unit amplitudes on the second and third channels of 

the introduced transmission block T  (amplitude of incidence wave for the first channel is 

zero) wave with unit amplitude must exit from the first channel: 

 
3,12,1

1 TT SS  . (1) 

In the case of blocks 1B  and 2B  having equal sizes 
2,1TS =

3,1TS . Then: 

 50
3,12,1

,SS TT  . (2) 

Obtained matrix will have the following form: 
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001

5,05,00

TS . (3) 

INCIDENCE  OF  PLANE  WAVE  ON  GRATING  MADE  FROM   

METAL-DIELECTRIC  STRIPS 

Validation of grids stitching technique 

Capabilities of the developed technique are shown by example of numerical solution 

for problem of plane linearly polarized electromagnetic wave diffraction on periodic grating 

made by metal-dielectric strips (fig. 2). Parameters of the grating: thickness of strips is 

h = 0,5 mm, width of strips is d  = 5 mm, distance between strips is w = d . Dielectric per-

mittivity is equal to 10,0 and corresponds to material Arlon AR 1000. Case of normal inci-

dence is considered. Magnetic component of electromagnetic field is parallel to strips. Initial 

diffraction problem is reduced to equivalent waveguide containing one period of the grating. 

Periodic boundary conditions are defined at sides of the waveguide. Part of the waveguide 

with length of 6 wavelengths containing inhomogeneity is divided into N  blocks along the 

grating plane (х axis) and into 29 blocks perpendicularly to the grating plane (y axis). Die-

lectric part of the grating is divided into 3 blocks along y axis, metallic coating of the grating 

is modeled by metallization blocks with infinite conductivity [1]. Sizes of blocks along y ax-

is placed in 4 rows adjacent to the grating from every side are equal to the thickness of strips 

(see fig. 2). Coefficients of reflection and transmission are computed with accounting of sin-

gle-mode scattering by using iterative algorithm for the MAB (calculation of complex ampli-

tudes of incident and reflected waves for all blocks by sequential iterations with accounting 

of sources and boundary conditions [3]) with 20 000 iterations. 

Dependencies of absolute values of transmission coefficients for plane wave fallen on 

the grating versus wave sizes of strips calculated by the developed technique for various k  

and number of blocks along x axis for local grid kNM   (local grid contains blocks corre-
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sponding to the grating internals and blocks placed in two rows adjacent to the grating) are 

shown in fig. 3. 

According to fig. 3, frequency of resonance is less and less changed with increase of 

blocks number. This is connected with gradual convergence of the MAB to the exact solu-

tion (in order to retrieve exact solution, it is required also to reduce discretization along y 

axis, but it is not the purpose of the paper). 

 

      

a    b   c 

Fig. 2.   a – Modelled structure: infinite periodic grating made from metal-dielectric strips. Dielectric 

part of strips is coated at both sides by infinitely thin metal with ideal conductivity; b – Part of 

rectiliear grid; c – Grid with local secondary decomposition used for modeling (N = 20, k = 2, 

M = 40) 

One can see from fig. 3 that transmission coefficient is mostly determined by number 

M  of blocks along x axis near to the grating: difference between transmission coefficients 

calculated using local decomposition and without it but with the same M  is negligibly 

small. This proves validity of transmission matrix TS  used for transmission block T . 

Maximal size of the MAB block is limited to 0,25 of wave length [1]. Because we in-

vestigate the structure at frequencies near to the frequency of first resonance in strips (half of 

wave length in dielectric is nearly equal to width of the strips), minimal number of blocks 

along the grating period M  is 4. For grid without local decomposition N = M , therefore us-

ing N equal to 2 is not possible without local decomposition (see fig. 3, a), curve «N = 2, 

k = 20, M = 40»). 

INCREASING  OF  COMPUTATIONAL  EFFICIENCY  DUE  TO  LOCAL 

DECOMPOSITION 

If iterative algorithm is used, then time required for calculation of one iteration and 

memory required for storing vectors of complex amplitudes of incident and reflected waves 

are proportional to number of used blocks. For the structure examined in Section «Validation 

of grids stitching technique», total number of blocks (with accounting of introduced trans-

mission block) is equal to NNkNKsubgrids 2)1(729  . In order to achieve the same pre-
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cision without local decomposition, it is required to use number of blocks along the grating 

nearly equal to kN  (see Section «Validation of grids stitching technique»). Total number of 

blocks in this case is kNK 29 . Expenses of time and memory are reduced by using local 

decomposition subgridsKK /  times: 

 ;
2)1(729

29

2)1(729

29
/







k

k

NNkN

kN
KK subgrids  (4) 

So, for grid with N =2 blocks and with local grid containing 6 blocks along the grating 

( M = 6, k  = 3) gain will be 
3

/
ksubgridsKK 1,9. For k =20 we get 

20
/

ksubgridsKK 3,5. 

Maximally possible gain is 29/7≈4,1. 

Gain of computational efficiency in three-dimensional case should be more valuable. 

Note that number of iterations required to retrieve converged solution is decreased 

with decreasing number of blocks. But given effect requires separate study. 

 

Fig. 3.   Transmission coefficient of plane wave through the grating made from  

metal-dielectric strips (magnetic polarisation) 

CONCLUSION 

A technique which makes it possible to use local decomposition in two-dimensional 

version of the minimal autonomous blocks method is described. Efficiency of the developed 

technique is shown for problem of plane wave diffraction at periodic grating made from 

metal-dielectric strips. 

Directions of further development include expansion of the developed technique: 1) 

on three-dimensional case, 2) on case of local decomposition with 21 BB hh   (see Section 

«Local decomposition in MAB method»). 
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