## ДЕТЕКЦИЯ ДИФФЕРЕНЦИАЛЬНЫХ СПЛАЙСИНГОВЫХ СОБЫТИЙ В ТРАНСКРИПТОМЕ КЛЕТОК ЧЕЛОВЕКА С ПОМОЩЬЮ ВЫСОКОПРОИЗВОДИТЕЛЬНОГО СЕКВЕНИРОВАНИЯ

## В. В. Гринев<sup>1</sup>, И. Н. Ильюшёнок<sup>1</sup>, S. Накжайн<sup>2</sup>, К. Бонифер<sup>3</sup>, О. Хайденрайх<sup>4</sup>

<sup>1</sup>Кафедра генетики, Белорусский государственный университет <sup>2</sup>Группа биоинформационной поддержки, Ньюкаслский университет <sup>3</sup>Институт рака и геномных наук, Бирмингемский университет Бирмингем, Великобритания <sup>4</sup>Северный институт по исследованию рака, Ньюкаслский университет Hьюкасл, Великобритания *е-mail: griney vy@bsu.by* 

На основе данных полнотранскриптомного секвенирования осуществлена сборка транскриптома клеток, различающихся по уровню экспресии гибридного онкогена RUNX1-RUNX1T1, построены карты сплайсинговых событий, показана высокая эффективность линейного моделирования при оценке дифференциального проявления таких событий. Проведена всесторонняя функциональная аннотация дифференциальных сплайсинговых событий, идентифицированы структурные различия в организации белков, кодируемых дифференциально экспрессирующимися изоформами РНК.

*Ключевые слова*: RNA-seq; сборка транскриптома; дифференциальный сплайсинг; аннотирование; мета-классификаторы.

### DETECTION OF THE DIFFERENTIAL SPLICING EVENTS IN TRANSCRIPTOME OF HUMAN CELLS USING NEXT-GENERATION SEQUENCING

## V. V. Grinev<sup>1</sup>, I. M. Ilyushonak<sup>1</sup>, S. Nakjang<sup>2</sup>, C. Bonifer<sup>3</sup>, O. Heidenreich<sup>2</sup>

<sup>1</sup>Department of Genetics, Belarusian State University Minsk, Belarus <sup>2</sup>Bioinformatics Support Unit, University of Newcastle Newcastle upon Tyne, UK <sup>3</sup>Institute of Cancer and Genomic Sciences, University of Birmingham Birmingham, UK <sup>4</sup>Northern Institute for Cancer Research, University of Newcastle Newcastle upon Tyne, UK

The transcriptomes of cells with different expression of the fusion oncogene RUNX1-RUNX1T1 were assembled from high-throughput sequencing data. Splicing

maps were also inferred from primary sequencing data and the differential splicing events were identified with linear modeling. Moreover, a comprehensive functional annotation of identified differential splicing events was carried out. This annotation confirmed that the differentially expressed RNA isoforms may encode functionally distinct proteins with unique conserved domain structures.

*Keywords*: RNA-seq; assembling of transcriptome; differential splicing; annotation; meta-classifiers.

Результаты исследований, проведенных в различных научных лабораториях мира в последние годы, указывают, что первичные транскрипты не менее чем 90 % генов человека подвергаются альтернативному сплайсингу [2]. Альтернативный сплайсинг может протекать как в одной и той же клетке, так и в клетках разных типов и разной тканевой принадлежности, а также на разных стадиях развития или в разных условиях существования. В конечном счете альтернативный сплайсинг значительно увеличивает сложность транскриптома и протеома клеток и расширяет функциональные и адаптационные возможности живых организмов.

Разработка и внедрение в исследовательскую практику инструментальных методов высокопроизводительного анализа, в частности, полнотранскриптомного секвенирования, предоставляет уникальные возможности глубже и на системном уровне понять особенности организации и функционирования транскриптома клеток человека в норме и при различных заболеваниях. Однако чтобы воспользоваться открывшимися возможностями, нужны новые подходы в обработке больших массивов данных и интерпретации результатов.

Мы апробировали комплексный аналитический подход для идентификации дифференциальных (проявляющих себя в разной степени) сплайсинговых событий по данным высокопроизводительного секвенирования. Объектом наших изысканий был транскриптом клеток линии Kasumi-1, которая является лабораторной моделью положительной по транслокации *t*(8; 21)(q22; q22) формы острого миелоидного лейкоза. При этом использовались клетки, где идет экспрессия гибридного онкогена RUNX1-RUNX1T1, играющего важную роль в развитии данной формы лейкоза, и без экспрессии этого онкогена.

#### СБОРКА ТРАНСКРИПТОВ

Первый этап нашей аналитической работы был нацелен на сборку транскриптов из RNA-seq ридов. Для этого использовался сборщик Cufflinks [5], который был выбран как наиболее эффективный и релевантный поставленной задаче. Алгоритм работы сборщика включает реконструкцию ациклического орграфа (экзонного графа), извлечение из этого орграфа ориентированных путей, соответствующих полноразмерным транскриптам, и взвешивание полученных транскриптов.

Вершинами экзонного графа являются экзоны, а дугами – сплайсинговые события, которые объединяют экзоны, разделенные на уровне геномной ДНК и пре-мРНК интронами, в единую непрерывную последовательность зрелой мРНК. Нуклеотидная последовательность каждого из экзонов реконструировалась из групп перекрывающихся ридов, объединенных в контиги. Сплайсинговые события идентифицировались с помощью алгоритма глобального картирования seed-and-vote. Подтверждением таких событий были риды, для успешного картирования которых их необходимо было разделить на два (реже три) сегмента, причем разные сегменты картировались по раз-

ным участкам генома (экзонам гена). Для каждого гена, экспрессирующегося в изучаемых клетках, реконструировался отдельный экзонный граф.

Молекулой РНК в экзонном графе является ориентированный путь, выходящий из 5'UTR-экзона (истока) и заканчивающийся в 3'UTR-экзоне (стоке). Для каждого экзонного графа в соответствии с теоремой Дилуорса извлекалось такое минимальное подмножество ориентированных путей, которое максимально полно описывало все риды, картированные по данному гену. Эти пути взвешивались по количеству ридов, их подтверждающих, как описано в работе Trapnell C. [5]. Полученные промежуточные результаты подвергались глубокому парсингу и фильтрации с помощью оригинального *R*-кода, после чего с помощью алгоритма Cuffdiff [6] путям, прошедшим фильтрацию, переназначались веса, а окончательные данные сохранялись в виде GFF3-файлов. Пример результатов сборки транскриптов представлен на рис. 1.







Теоретически сборка полноразмерных транскриптов и их количественное сравнение является наиболее правильным решением задачи по идентификации дифференциальных сплайсинговых событий в двух разных типах или состояниях клеток. Однако этот подход имеет ряд недостатков, что ограничивает его применимость. В частности, использованный нами сборщик Cufflinks позволяет реконструировать не менее двух мультиэкзонных транскриптов на ген только для 70 % проанализированных генов. Кроме того, в тех случаях, когда с гена считывается много близких по структуре изоформ РНК, алгоритм может собрать несколько альтернативных наборов транскриптов. При этом количественная оценка экспрессии таких изоформ нередко ненадежна и нуждается в экспериментальной верификации.

# ИДЕНТИФИКАЦИЯ ДИФФЕРЕНЦИАЛЬНЫХ СПЛАЙСИНГОВЫХ СОБЫТИЙ С ПОМОЩЬЮ ЛИНЕЙНОГО МОДЕЛИРОВАНИЯ

На втором этапе работы мы сосредоточились на прямом поиске дифференциальных сплайсинговых событий, без реконструкции полноразмерных транскриптов. По нашему мнению, такой подход позволяет уточнить и расширить результаты первого этапа, описанного выше, хотя при этом и не предоставляет информации о структуре дифференциально экспрессирующихся изоформ РНК.

Для успешной реализации второго этапа мы провели картирование RNA-seq ридов с помощью элайнера Subjunc и собрали данные обо всех потенциальных сплайсинговых событиях в виде матрицы сплайсинга. Далее количественные данные последовательно нормализовались относительно размера RNA-seq библиотек, преобразовывались в количество ридов на миллион (CPM, акроним от англ. counts per million), log<sub>2</sub>-трансформировались [1, 3] и использовались для расчета параметров линейных моделей limma [4].

В итоге линейное моделирование позволило нам установить кратность различий (или logFC, от англ. logarithm of fold changes) по встречаемости сплайсинговых событий в транскриптоме клеток линии Kasumi-1, находящихся в двух состояниях (с и без нокдауна гибридного онкогена RUNX1-RUNX1T1), и рассчитать ассоциированные статистические метрики. С помощью такого подхода нам удалось идентифицировать 95 генов, мРНК которых содержат сплайсинговые события, различающиеся в двух состояниях клеток линии Kasumi-1, что на 30 % больше, чем при сборке полноразмерных транскриптов (рис. 2).



*Рис.* 2. График-«вулкан» распределения сплайсинговых событий между двумя состояниями клеток (слева) и диаграмма Венна распределения доменных структур белков, кодируемых транскриптами с постоянной или меняющейся экспрессией (справа)

#### ФУНКЦИОНАЛЬНАЯ АННОТАЦИЯ ИЗОФОРМ РНК И СПЛАЙСИНГОВЫХ СОБЫТИЙ

На третьем, завершающем, этапе мы составили всестороннюю аннотацию (описание) идентифицированных изоформ РНК и сплайсинговых событий. При этом основной упор делался на функциональные особенности, но учитывались также и структурные признаки анализируемых объектов. Так, РНК были описаны по 51-му признаку, касающемуся особенностей их нуклеотидной последовательности, и по 5588-му признаку, описывающему кодируемые ими белки. Кроме того, особое внимание было уделено доменной структуре белков, кодируемых изоформами РНК.

Столь подробная аннотация понадобилась, что бы в последующем найти различия между дифференциально и недифференциально экспрессирующимися изоформами РНК. Для этого использовался метод главных компонент (стандартный вариант и его «ядерные» модификации), а также мета-классификаторы (random forests, GBM и SVM). В конечном итоге мы обнаружили, что ряд дифференциально экспрессирующихся изоформ РНК кодируют структурно и функционально различающиеся белки по сравнению с изоформами, экспрессия которых постоянна (рис. 2).

Кроме того, отдельно были аннотированы не изоформы РНК, а сплайсинговые события, для чего были задействованы признаки пяти классов – от особенностей нуклеотидной последовательности экзонов до эпигенетических признаков. В дальнейшем, с опорой на такую комплексную аннотацию, было показано, что дифференциальный сплайсинг не является случайным процессом. Так, мы наблюдали нелинейную отрицательную зависимость между вероятностью того, что сплайсинговое событие будет дифференциально представлено в транскриптоме клеток с разным статусом гибридного онкогена RUNX1-RUNX1T1, и расстоянием до таких эпигенетических маркеров, как сайты гиперчувствительности к ДНКазе I, модифицированные гистоны H3K9Ac или пики РНК полимеразы II.

Таким образом, данные полнотранскриптомного секвенирования содержат информацию о дифференциальных сплайсинговых событиях, отличающих транскриптомы сравниваемых клеток. Однако для извлечения такой информации необходим комплексный аналитический подход, который должен включать как разные методы идентификации сплайсинговых событий, так и их всестороннюю аннотацию.

#### БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

1. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor / S. Anders [et al.] // Nat. Prot. 2013. Vol. 8. № 9. P. 1765–1786.

2. Genomics of alternative splicing: evolution, development and pathophysiology / E. R. Gamazon [et al.] // Hum. Gen. 2014. Vol. 133. № 6. P. 679–687.

3. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts / C. W. Law [et al.] // Gen. Biol. 2014. Vol. 15. P. R29.

4. Limma powers differential expression analyses for RNA-sequencing and microarray studies / M. E. Ritchie [et al.] // Nuc. Acid. Res. 2015. Vol. 43. № 7. P. e47.

5. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks / C. Trapnell [et al.] // Nat. Prot. 2012. Vol. 7. № 3. P. 562–578.

6. Differential analysis of gene regulation at transcript resolution with RNA-seq / C. Trapnell [et al.] // Nat. Biotechnol. 2013. Vol. 31. № 1. P. 46–53.