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In [1], Sampathkumar and Neeralagi have introduced the notion of a neighbourhood set
of vertices: in a graph 𝐺, a set 𝑆 ⊆ 𝑉 (𝐺) of its vertices is called a neighbourhood set if

𝐺 =
⋃︁
𝑣∈𝑆

𝐺(𝑁 [𝑣]),

where 𝑁 [𝑣] is the closed neighbourhood of a vertex 𝑣 and 𝐺(𝑋) denotes the subgraph of
𝐺 induced by a vertex set 𝑋. In other words, a neighbourhood set 𝑆 in 𝐺 is a special kind
of dominating set with an additional constraint that for every edge 𝑒 of 𝐺, there exists a
vertex 𝑣 ∈ 𝑆 adjacent to both endvertices of 𝑒. The minimum size of the neighbourhood
sets in a graph 𝐺 is called its neighbourhood number 𝑛𝑏(𝐺).

In [2], the same authors have proposed a related notion of a connected neighbourhood
set of vertices. A neighbourhood set of vertices in a graph 𝐺 is called a connected
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neighbourhood set if it induces a connected subgraph of 𝐺. The minimum size of connected
neighbourhood sets in a graph 𝐺 is called its connected neighbourhood number 𝑛𝑏𝑐(𝐺).

In [3], we have shown that in a certain class of graphs (hence called domination
triangle and also known as edge-simplicial) characterized by every domination set being a
neighbourhood set, it is NP-hard to approximate 𝑛𝑏(𝐺) (which is equal to the domination
number 𝛾(𝐺) in every graph of that class) within a factor of 𝑐 ln |𝑉 (𝐺)| for some constant
𝑐 > 0. This remains true in the class of simplicial split graphs, i.e. split graphs [4] having
such a partition 𝑉 (𝐺) = 𝐼 ∪𝐶 of the vertex set that 𝐼 is an independent set and 𝐶 is a
simplicial clique (there exists a vertex 𝑠 ∈ 𝐶 such that 𝑁 [𝑠] = 𝐶).

Following this idea, we introduce the class of connected-domination triangle graphs char-
acterized by every its connected dominating set (a dominating set of vertices inducing a
connected subgraph) being a connected neighbourhood set. Let 𝛾𝑐(𝐺) denote the con-
nected domination number, i.e. the minimum size of the domination sets of the graph 𝐺
that induce connected subgraphs. Then, clearly, for every connected-domination triangle
graph 𝐺, 𝑛𝑏𝑐(𝐺) = 𝛾𝑐(𝐺).

For an edge 𝑢𝑣 ∈ 𝐸(𝐺) of a graph 𝐺, call 𝑁 [𝑢] ∩ 𝑁 [𝑣] the private neighbourhood
𝑃𝑁 [𝑢𝑣] of 𝑢𝑣. Call a vertex 𝑣 private to the edge 𝑒 if 𝑁 [𝑣] ⊆ 𝑃𝑁 [𝑒]. We characterize
the class of connected-domination triangle graphs with the following theorem, which implies
a trivial polynomial recognition algorithm.

Theorem 1. A graph 𝐺 is connected domination triangle iff for every its edge 𝑒 ∈
∈ 𝐸(𝐺) having no private vertices, the vertex set 𝑉 (𝐺) ∖ 𝑃𝑁 [𝑒] induces a disconnected
subgraph.

Corollary 1. Every simplicial split graph is connected-domination triangle.
Corollary 2. For every simplicial split graph 𝐺,

𝑛𝑏𝑐(𝐺) = 𝛾𝑐(𝐺).

The following result helps us link the approximation hardness for the parameter 𝑛𝑏𝑐
with that of the parameter 𝛾.

Theorem 2. For a simplicial split graph 𝐺,

𝛾𝑐(𝐺) = 𝛾(𝐺).

Corollary 3. It is NP-hard to approximate 𝑛𝑏𝑐(𝐺) within a factor of 𝑐 ln |𝑉 (𝐺)| for
some constant 𝑐 > 0 in the class of simplicial split graphs.
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