

БАЙЕСОВСКОЕ ПРОГНОЗИРОВАНИЕ ВРЕМЕННЫХ РЯДОВ НА ОСНОВЕ МОДЕЛЕЙ В ПРОСТРАНСТВЕ СОСТОЯНИЙ

В.И. Лобач

Белгосуниверситет, факультет прикладной математики и информатики, Минск, Беларусь lobach@bsu.by

Важной проблемой в теории временных рядов является прогнозирование будущих значений временного ряда на основе доступных наблюдений. Удобной математической моделью описания временных рядов является так называемая модель в пространстве состояний [1, 2]. В наиболее общем виде она может быть описана следующим образом:

$$x_t = f(x_{t-1}, t, \theta_1) + \varepsilon_t, \tag{1}$$

$$y_t = h(x_t, t, \theta_2) + \eta_t, \quad t = 0, 1, \dots, T,$$
 (2)

где уравнение (1) представляет изменение во времени состояния системы, оно называется уравнением состояния; предполагается, что значения x_t не наблюдаются. Уравнение (2) представляет собой канал наблюдений, случайные величины $\{\eta_t\}$ описывают ошибки наблюдений; θ_1 , θ_2 — неизвестные параметры, $\varepsilon_t \sim N(0,Q_t)$, $\eta_t \sim N(0,R_t)$. Функции $f(x,t,\theta_1)$, $f(x,t,\theta_2)$ — известны. Цель анализа состоит в оценивании состояния x_{t+m} по множеству наблюдений $Y_0^t = \{y_0,y_1,\ldots,y_t\}$. Если m>0, то мы имеем задачу прогнозирования, при m=0— задачу фильтрации, при m<0— задачу сглаживания.

В рамках байесовского подхода один из методов построения статистических оценок заключается в использовании апостериорной плотности вероятностей x_t при наблюдениях Y_0^t , $p(x_t \mid Y_0^t)$; которую принято называть байесовской прогнозной плотностью. В данной работе рассматривается случай, когда параметры θ_1 , θ_2 известны, также известно априорное распределение вероятностей случайной величины $x_0 \sim N(m_0, \gamma_0)$ и характеристики распределений шумов $\{\varepsilon_t\}$ и $\{\eta_t\}$.

Теорема. Байесовская прогнозная плотность распределения вероятностей $p(x_t \mid Y_0^t)$ удовлетворяет следующему рекуррентному соотношению:

$$p(x_{t+1} \mid Y_0^{t+1}) = \frac{\int_R p(x_t \mid Y_0^t) p(x_{t+1} \mid x_t) p(y_{t+1} \mid x_{t+1}) dx_t}{\int_{R^2} \int p(x_t \mid Y_0^t) p(x_{t+1} \mid x_t) p(y_{t+1} \mid x_{t+1}) dx_t dx_{t+1}},$$

где условные плотности $p(x_{t+1} \mid x_t)$ и $p(y_{t+1} \mid x_{t+1})$ определяются плотностями распределения вероятностей случайных величин $\{\varepsilon_t\}$, $\{\eta_t\}$.

Прогнозирующая статистика $\hat{y}_{t|t-1}$ определяется по формуле $\hat{y}_{t|t-1} = \int_R yp \times (y \mid Y_0^t) dy$, где $p(y \mid Y_0^t) = \int_{R^2} p(y \mid x_{t+1}) p(x_{t+1} \mid x_t) p(x_t \mid Y_0^t) dx_t dx_{t+1}$, — плотности $p(y \mid x_{t+1})$, $p(x_{t+1} \mid x_t)$ определяются плотностями распределений $\{\varepsilon_t\}$ и $\{\eta_t\}$.

Вычисление интегралов проводится с помощью разложения подынтегральных функций по вейвлет-базису.

Литература

- 1. Harvey A., Koopman S., Shepard N. State Space and Unobserved Component Models. Cambridge University Press, 2004. 380 p.
- 2. Durbin J., Koopman S. J. *Time Series Analysis by State Space Methods*. Oxford University Press, 2011. 346 p.